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Survey on statistical inferences  
in weakly-identified instrumental variable models

This paper provides a brief review of the current state of knowledge on the topic of weakly-
identified instrumental variable regression. We describe the essence of the problem of weak 
identification, possible methods for detecting it in applied work as well as methods robust to 
weak identification. Special attention is devoted to the question of hypothesis testing in the 
presence of weak identification.
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1. Introduction

I nstrumental variable (IV) regression is a very popular way of estimating the causal effect of a potentially endogenous regressor X on variable Y. Classical ordinary least squares (OLS) re-
gression results in biased estimators and invalid inferences when the regressor X is endogenous, 

that is, correlated with the error term in the structural equation. This arises in many practically 
relevant situations when the correlation between X and Y does not correctly reflect the causation 
from X to Y, because, for example, some variables that influence both X and Y are omitted from 
the regression, or because there is reverse causality from Y to X. The idea behind IV regression 
is to use some exogenous variables Z (that is, variables not correlated with the error term) to dis-
entangle some part of the variation in X that is exogenous and to estimate the causal effect of this 
part on Y using classical methods.

The typical requirements for the validity of the IV regression are twofold: the instruments Z are 
required to be exogenous (not correlated with the error term) and relevant. The last requirement 
loosely means that Z should be correlated with X. The problem of weak identification arises when 
this latter requirement of relevance is close to being violated. As we will see below the problem 
of weak identification manifests itself when an IV estimator is very biased and when classical IV 
inferences are unreliable.

To fix the ideas let us assume that one wants to estimate and make inferences about a k1-di-
mensional coefficient b in the regression

	 Y X W ei i i i= , +  +b g  	 (1)

where Xi  is a k1  regressor potentially correlated with the error term ei . We assume that 
p1-dimensional regressors Wi  are exogenous and that the coefficient g is not of interest by 
itself. Since there may be a non-zero correlation between Xi  and ei , the OLS estimator of 
coefficient b is biased and asymptotically inconsistent, while all statistical inferences using 
it, such as OLS confidence sets and OLS tests based on t-statistics provide coverage (size) that is 
asymptotically wrong.
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The IV regression approach assumes that one has r1-dimensional variable Zi  which sa
tisfies two conditions: (i) exogeneity ( EZ ei i = 0 ) and (ii) relevance; that is, the rank of matrix 
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The estimation procedure often used in the IV setting is the so-called Two-Stage Least-Squares 
(TSLS) estimator, which employs two steps. First, it disentangles an exogenous variation in Xi  
which is due to variation in Zi ; for this one uses the OLS regression of Xi  on exogenous vari-
ables Zi  and Wi . In the second stage coefficients b and g are estimated via the OLS regression 
of Yi  on Wi  and the exogenous part of Xi  obtained during the first stage. For a classical treat-
ment of TSLS the reader may refer any modern econometrics textbook (for example, chapter 3 in 
(Hayashi, 2000) and chapter 8 in (Greene, 2012)). It has been shown that under assumptions of 
exogeneity and relevance of instruments Zi , the TSLS estimator of b is consistent and asymptoti-
cally normal. Asymptotically valid testing procedures as well as procedures for the construction 
of a confidence set for b can be based on the TSLS t-statistics.

The problem of weak instruments arises when instrument Zi  is exogenous but the relevance 
condition is close to being violated. In such a case classical asymptotic approximations work poor-
ly, and inferences based on the TSLS t-statistics become unreliable and are often misleading.

Example: return to education. What follows is one of the most widely known empirical 
examples of weak IV regression. For an initial empirical study we refer to Angrist and Krueger 
(1991), and for a discussion of the weakness of the used instruments to Bound et al. (1995). The 
empirical question of interest is the estimation of the causal effect of years of education on the 
lifetime earnings of a person. This question is known to be difficult to answer because the years 
of education attained is an endogenous variable, since there exist some forces that both affect the 
educational level as well as the earnings of a person. Many cite «innate ability» as one such force. 
Indeed, an innately more talented person tends to remain in school longer, and, at the same time, 
s/he is more likely to earn more money, everything else being equal.

Angrist and Krueger (1991) suggested the use of the «quarter of birth» (quarter in which the 
person was born) as an instrument. They argue that the season in which a person is born likely will 
not have a direct effect on his earnings, while it may have an indirect effect (through the educa-
tion attained). The argument here is that most states have compulsory education laws. These laws 
typically state that a student can be admitted to a public school only if s/he is at least six years old 
by September 1. Most states also require that a student stay in school at least until he or she turns 
16 years old. In this way a person born on August 31 will have a year more of education than the 
person born on September 2 by the time they both reach the age of 16, when they have the option 
of dropping out of school. Thus, the quarter of birth is arguably correlated with the years of edu-
cation attained.

Even though the instrument (quarter of birth) is arguably relevant in this example, that is, cor-
related with the regressor (years of education), we may suspect that this correlation is weak. At 
the time Angrist and Krueger (1991) was written, it was known that weak correlation between the 
instrument and the regressor could lead to significant finite-sample bias, but for a long time this 
was considered to be a theoretical peculiarity rather than an empirically-relevant phenomenon. 
There existed several beliefs at that time. One of them was that the weak correlation between the 
instrument and the regressor would be reflected in large standard errors of the TSLS estimator, 
and they would tell an empirical researcher that the instrument was not informative. Another be-
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lief was that the bias of the TSLS estimator was a finite-sample phenomenon, and that empirical 
studies with a huge number of observations were immune to such a problem. Bound et al. (1995) 
showed that these beliefs were incorrect.

Bound et al. (1995) used the data from Angrist and Krueger’s (1991) study, but instead of us-
ing the actual quarter of birth, they randomly assigned a quarter of birth to each observation. This 
«randomly assigned quarter of birth» is obviously an exogenous variable, but it is totally irrelevant, 
as it is not correlated with education. Thus, the IV regression with a randomly-assigned instrument 
cannot identify the true causal effect. However, Bound et al. (1995) obtained, by running TSLS 
with randomly-assigned instruments, results very similar to those of Angrist and Krueger (1991). 
What is especially interesting in this experiment is that the TSLS standard errors for a regression 
with invalid instruments were not much different from those of Angrist and Krueger (1991). That 
is, just by looking at the TSLS standard errors, the researcher cannot detect a problem. Another 
amazing aspect of this exercise was that the initial study described in (Angrist, Krueger, 1991) 
had a humongous number of observations (exceeding 300000), but nevertheless revealed signifi-
cant bias in the TSLS estimator.

In what follows we will discuss the asymptotic foundations of weak identification, how one 
can detect weak instruments in practice and tests robust to weak identification.

There are several great surveys available on weak instruments: they include Andrews and Stock 
(2005), Dufour (2004) and Stock et al. (2002) among others. I also draw the reader’s attention to 
a lecture on weak instruments given by Jim Stock as a part of a mini-course at the NBER Sum-
mer Institute in 20081.

2. What are weak instruments?

To explain the problem that arises from the presence of only weak correlation between the in-
struments and the regressor, we consider the highly simplified case of a homoskedastic IV model 
with one endogenous regressor and no controls. Even though this example is artificial, it illustrates 
well all the difficulties associated with weak instruments.

Assume that we are interested in inferences about coefficient b in the following regression 
model
	 Y X ei i i= ,b +  	 (2)

where Yi  and Xi  are one-dimensional random variables. We employ TSLS estimation with 
instruments Zi  and the first-stage regression is

	 X Z vi i i= ,p+  	 (3)

where Zi  is an r1-fixed exogenous instrument; ei  and vi  are mean zero random error terms. 
In general, error terms ei  and vi  are correlated, and thus, Xi  is an endogenous regressor. If the 
unknown coefficient p is not zero, then the instrument Zi  is relevant, and the coefficient b is point-

identified. The usual TSLS estimator is ˆ = ,Z
TSLS

Z

X P Y
X P X


b


 where P Z Z Z ZZ = ( ) 1 - , and all observations 

1	 Available on http://www.nber.org/minicourse_2008.html. 
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are stacked in matrices Y, X and Z according to the usual conventions. Let us make the additional 
assumption that error terms ( , )e vi i  are independently drawn from a normal distribution with 
variances s e

2  and s v
2  and correlation r.

Let us introduce a concentration parameter m p p s2 2= / Z Z v  and random variables 
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It is easy to see that xe  and xv  are standard normal Gaussian variables with correlation r, while 
Svv  and Sev  are quadratic forms of normal random variables with respect to the idempotent ma-
trix PZ . One can show that the joint distribution of ( , , , )x xe v vv veS S  is known, depends on r, and 
does not depend on sample size or p. Under assumptions stated above, Rothenberg (1984) (an-
other important result on the distribution of TSLS is (Nelson, Startz, 1990)) derived the following 
exact finite-sample distribution of the TSLS estimator ˆ

TSLSb :

	 0 2

/ˆ( ) = ,
1 2 / /

e e ve
TSLS

v v vv

S
S

s x + m
m b - b 

s + x m+ m
 	 (4)

where b0 is the true value of b. Notice that in this expression m2 plays the role of sample size. 
If m2  is large, in particular, if m , then 0

ˆ( )TSLSm b - b  asymptotically converges to a normal 
distribution, while if m is small, then the finite-sample distribution of ˆ

TSLSb  is non-standard and 
may be far from normal. From this perspective m measures the amount of information data have 
about the parameter b.
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Fig. 1. Finite-sample distribution of the TSLS estimator given by formula (4) 

for different values of the concentration parameter r = 0.95 , 
s

s
e

v

=1, b0 = 0 , r =1
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In Figure 1 we depict the finite-sample distribution of the TSLS estimator based on equation (4) 
for different values of the concentration parameter. The degree of endogeneity is characterized by 
the correlation between errors r. For Figure 1 we used r = 0.95. The true value of b is chosen to 
be zero. What we can see is that for extremely small values of m2 the TSLS estimator is very bi-
ased towards the OLS estimator. It is easy to show that for m2 = 0  the distribution of the TSLS is 
centered around the limit of the OLS estimator, which in this case is equal to 0.95. The bias be-
comes smaller as m increases, but the distribution is still skewed and quite non-normal. For large 
m2 ( m2 = 25 ) the estimator has nearly no bias, and the distribution is quite close to normal. The 
behavior of the finite-sample distribution of the t-statistic is very similar to that of the distribu-
tion of the TSLS.

Looking at the definition of the concentration parameter we notice that m can be small if p is 
small, that is, if the correlation between the instrument and the regressor is weak. The weaker the 
correlation, the further away the finite sample distribution of ˆ

TSLSb  is from normality.
However, we may notice that the concept of «weak» correlation depends in a significant 

way on the sample size n. Indeed, let us look again at the expression for the concentration pa-

rameter m p p s2

1

2= / 












Z Zi i
i

n

v . It is a customary assumption in classical econometrics that 

1

1n
Z Z Qi i

i

n

ZZ 


  as n  becomes large. So, we can see that to get the same value of the concentra-

tion parameter, which measures the quality of the normal approximation, we may have different 
combinations of p and n. The weaker the correlation p, the larger the number of observations we 
need to guarantee the same quality of asymptotic normal approximation. The exact trade-off can 
be expressed if the coefficient p changes with the sample size, namely, pn C n= / , where C is 
a constant non-zero vector. In such setting, as the sample size increases, m2 converges to a constant 
value of m s 2 2= /C Q CZZ v . This asymptotic embedding is referred to as «weak instrument asymp-
totics» and was first introduced in (Staiger, Stock, 1997).

Staiger and Stock (1997) also proved that if one has a more general setting, allowing for random 
(rather than fixed) instruments, non-normal error terms and additional exogenous controls, and con-
sider a sequence of models with pn C n= / , then under quite general assumptions 0

ˆ( )TSLSm b - b  
asymptotically converges (as the sample size increases to infinity) to the right-hand side of equa-
tion (4).

We know that if the instrument is relevant, that is, if EZ Xi i0  is fixed, then as the sample 
size increases ( n ) the concentration coefficient m2  increases as well, and as a result, ˆ

TSLSb  
is consistent and asymptotically normal. From this perspective some believe that weak instru-
ments are a finite-sample problem, and if one has a larger sample the problem will disappear. We 
argue here that this is neither a useful nor a constructive way to consider the problem; an applied 
researcher in economics usually does not have the luxury of choosing the sample size he or she 
would most prefer. As Staiger and Stock (1997) showed for each sample size (even for a very large 
one) there will exist some values of correlation between the instrument and the regressor such that 
the quality of normal approximation is poor. From this perspective it is better to treat the problem 
of weak instruments as an issue of the non-uniformity of asymptotics in the sense defined by Mi-
kusheva (2007). Namely, as the sample size goes to infinity and the correlation between Xi  and 
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Zi  is non zero, the convergence of 0
ˆ( )TSLSn b - b  to a normal distribution is not uniform with 

respect to this correlation. If the correlation is small the convergence is slow, and it will require a 
larger sample to allow for the normal approximation to be accurate. One may hope that another 
asymptotic embedding will provide better asymptotic approximation. Andrews and Guggenberg-
er (2010) proved that the weak-instrument asymptotic of Staiger and Stock (1997) results in the 
uniform asymptotic approximation.

3. Detecting weak instruments

The weak-instrument problem arises when the correlation between the instruments and the re-
gressor is too small for a given sample size and leads to several failures. First, the TSLS estimator 
is significantly biased towards the inconsistent OLS estimator. Second, tests and confidence sets 
based on the TSLS t-statistics violate size (coverage) requirements. The formal test that allows one 
to detect the weak-instrument problem has been developed by Stock and Yogo (2005).

Stock and Yogo’s (2005) test of weak instruments is based on so-called first-stage F-statistics. 
Assume that we wish to run regression (1) with instruments Zi. Then the first-stage regression is:

	 X Z W vi i i i= . +  +p d  	 (5)

Consider the OLS F-statistic for testing hypothesis H0 : = 0p  in the first-stage regression. 
Stock and Yogo (2005) demonstrated that there is a direct relation between the concentration pa-
rameter and the value of the F-statistic, and in particular, the low value of an F-statistic indicates 
the presence of weak instruments.

Stock and Yogo (2005) suggested two criteria for determining the cut-offs for the value of the 
first-stage F-statistic such that if the value of the F-statistic falls above the cut-off, then a researcher 
can safely assume that he can use the TSLS method. The first criterion is to choose the cut-off in 
such a way that the bias of the TSLS estimator does not exceed 10% of the bias of the OLS esti-
mator. The second criterion guarantees that if the value of the F-statistic is above the cut-off then 
the 5%-size test based on the TSLS t-statistic for b is not of a size exceeding 15%. Stock and Yo-
go (2005) provided the tables with cut-offs for different numbers of instruments, r, for both cri-
teria. These tables resulted in a more rough, but commonly used, rule of thumb, that a first stage 
F-statistic below 10 indicates the presence of weak instruments. Stock and Yogo (2005) also es-
tablished a generalization of this result to the case when the regressor Xi is multi-dimensional, and 
in such a case one ought to consider the first-stage matrix and a test for rank of this matrix (see 
(Cragg, Donald, 1993) for more details).

At this juncture, I want to voice a word of caution. The logic behind the detection of weak in-
struments through the first-stage F-statistic relies heavily on the assumption that the model is ho-
moskedastic. To the best of my knowledge the problem of detecting weak instruments in models 
with heteroskedasticity or autocorrelation of error terms remains unsolved.

An alternative approach to detect weak instruments is Hahn and Hausman’s (2002) test. It tests 
the null hypothesis that the instruments are strong and thus the rejection of such a hypothesis in-
dicates the presence of weak instruments. Unfortunately, the power of this test is low for some 
alternatives (see (Hausman et al., 2005)), and many cases of weak instruments may slip through 
the cracks.
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4. Inference methods robust towards weak instruments

In this section we discuss statistical inferences, that is, testing procedures and confidence set 
construction procedures that are robust to weak instruments. Tests (confidence sets) robust towards 
weak instruments are supposed to maintain the correct size (coverage) no matter whether the in-
struments are weak or strong.

The problems of testing and confidence set construction are dual problems. If one has a robust 
test, s/he can produce a robust confidence set simply by inverting the test. Namely, in order to 
construct a confidence set for b she should test all hypotheses of the form H0 0: =b b  for differ-
ent values of b0 and then examine the set of all b0  for which the hypothesis is accepted. This «ac-
ceptance set» will be a valid confidence set. In general the procedure can be implemented via grid 
testing (testing on a fine enough grid of values of b0 ). Because of the duality from now on we will 
mainly restrict our attention to the problem of robust testing.

One dramatic observation about tests (confidence sets) robust to weak instruments was made by 
Dufour (1997), whose statement was closely related to an earlier observation by Gleser and Hwang 
(1987). Dufour (1997) showed that if one allows the strength of the instruments to be arbitrarily 
weak, that is, the correlation between the instrument and the regressor are arbitrarily close to ze-
ro, then any robust testing procedure must produce confidence sets of infinite length with positive 
probability. This statement has a relatively simple intuition. If the instruments are not correlated 
with the regressor, i.e. they are irrelevant, then parameter b is not identified, and any value of b is 
consistent with data. A valid confidence set in such a case must be infinite at least with probability 
equal to the coverage. Dufour (1997) spells out a continuity argument if the correlation can ap-
proach zero arbitrarily closely. Dufour’s (1997) result implies that the classical TSLT t-test which 
compares the t-statistic with quantiles of the standard-normal distribution cannot be robust to weak 
instruments, since the corresponding confidence set is finite with probability one.

The main difficulty of performing inferences robust to weak instruments may be formulated in 
the following way. The distributions of the TSLS estimator and the TSLS t-statistic depend on the 
value of the concentration parameter m2, and from this perspective it can be called a nuisance pa-
rameter. Unfortunately, in weak-instrument asymptotics the value of the concentration parameter 
m2 cannot be consistently estimated.

Current literature contains several ideas of how to construct inferences robust to weak identifi-
cation. Among them are the idea of using a statistic the distribution of which does not depend on 
m, the idea to perform inferences conditionally on the sufficient statistics for m, and the idea of the 
projection method. We spell out these ideas one by one in more detail below. Currently the most 
progress has been achieved in the case of a single endogenous regressor (that is, when Xi  is one-
dimensional). The inferences in the case when Xi  is multi-dimensional mostly constitute an open 
econometric problem. I will discuss difficulties of this case in a separate section later on.

5. Case of one endogenous variable

Assume that data { , , }Y X Zi i i  satisfy structural equation (2) and first-stage equation (3). As-
sume that Yi  and Xi  are both one-dimensional, while Zi  is an r1  vector. Assume also that the 
error terms in both equations are conditionally homoskedastic. We are interested in testing the null 
hypothesis H0 0: =b b .
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All of the tests in this section can easily be generalized to include exogenous controls, that is, 
if we have structural equation (1) and first-stage equation (5). In such a case consider variables 
Y I P Y X I P XW W
 - -= ( ) , = ( )  and Z I P ZW

 -= ( ) , where P W WW WW = ( ) 1 - , then data on 
{ , , }Y X Zi i i

    satisfy the system of equations (2) and (3).
One approach to accurately perform inferences robust to weak instruments is to find statistics 

whose distributions do not depend on the value of the concentration parameter m2. We are aware of 
two such statistics: the Anderson–Rubin (AR) statistic introduced by Anderson and Rubin (1949) 
and the Lagrange Multiplier (LM) statistic whose robust properties were pointed out in (Kleiber-
gen, 2002; Moreira, 2002).

The AR statistic is defined in the following way:

AR
Y X P Y X r

Y X M Y X n r
Z

Z

( ) =
( ) ( ) /

( ) ( ) / ( )
,0

0 0

0 0

b
b b

b b

-  -

-  - -

here P Z Z Z Z M I PZ Z Z= ( ) , =1  -- , n is the sample size and r is the number of instruments. 
Under quite general assumptions the asymptotic distribution of the AR statistic does not depend on 
m2 either in classical or in weak-instrument asymptotics and converges in large samples to r r2 / . 
Large values of the AR statistics indicate violations of the null hypothesis.

To introduce the LM test let us consider the reduced-form for IV regression. For this plug equa-
tion (3) into equation (2), and obtain:

Y Z wi i i= ,bp +

where w e vi i i= +b . Let  be the covariance matrix of error terms ( , )w vi i . A natural estimator of 
 is  = / ( ) Y M Y n rZ , where Y Y X= [ ,  ]. Let us now introduce the following statistics (first 
used in (Moreira, 2002)):

	 S
Z Z Z Yb

b b
T

Z Z Z Y a

a
=

( )
,    =

( )1/2
0

0 0

1/2 1
0

0

 



 



  





1
0

,
a

 	 (6)

where b0 0= [1,  ]- b  and a0 0= [ , 1]b  . The LM statistic is of the following form

LM
S T
T T

( ) =
( )
( )

.0

2






Asymptotically, the LM statistic has a 1
2  distribution in both classical and in weak-instrument 

asymptotics (independently from the value of m2 ). A high value of the LM statistics indicates vio-
lations of the null hypothesis.

Both the AR statistics and the LM statistics when paired with the quantiles of the correspond-
ing 2  distributions can be used to form weak-instrument robust testing procedures known as the 
AR and the LM tests.

Moreira (2003) came up with a different, new idea of how to perform testing in a manner that 
is robust to the weak-instrument problem. Moreira (2003) considered a model like that described 
by equations (2) and (3) with the additional assumptions that instruments Zi  are fixed, error terms 
ei  and vi  are jointly i.i.d. normal, and the covariance matrix of reduced-form error terms  is 
known. Consider statistics S and T which are defined as in equation (6) and use  in place of . 
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Moreira (2003) showed that S and T are sufficient statistics for the model considered, and T T  is 
the sufficient statistic for the concentration parameter. In particular, if one considers a distribution 
of any test statistic R conditional on random variable T T , F x t R x T T tR T T| ( |  ) = { | = }  P , then this 
distribution does not depend on m2. So, instead of using fixed critical values, Moreira (2003) sug-
gested the use of critical values that depend on the realization of T T , that is, random critical values 
that are quantiles of conditional distribution F x t R x T T tR T T| ( |  ) = { | = }  P  evaluated at t T T=  . 
Moreira (2003) also demonstrated that any test that has exact size a for all values of (nuisance) 
parameter m, a so-called «similar test», is a conditional test on the statistic T T .

Any test can be corrected to be robust to weak instruments in this setting using the condition-
ing idea. There are two conditional tests usually considered: the conditional Wald test (corrected 
squared t-test) and the conditional likelihood ratio test (CLR).

The conditional Wald test uses a statistic equal to the square of the TSLS t-statistic and a criti-
cal value dependant on the realization of t T T=  , which are quantiles of the conditional distribu-
tion P{ | = }Wald x T T t   evaluated at t T T=  . Conditional quantiles are calculated using Monte 
Carlo simulations of the conditional distribution. Andrews et al. (2007) discuss the details of this 
testing procedure. They also showed that the power of the conditional Wald test is much lower 
than the power of alternatively available tests such as the AR, the LM and the CLR tests, and rec-
ommended that researchers not employ the conditional Wald test in practice.

The CLR test was introduced in (Moreira, 2003) and is based on the likelihood ratio (LR) sta-
tistic paired with conditional on T T  critical values. Below is the definition of the LR statistic in 
this case
	 LR S S T T S S T T S S T T S T=

1
2

( ) 4 ( )( ) ( )2 2 -  +  +  -   -   .  	 (7)

If the instruments are strong, then the LR statistic has asymptotically 1
2  distribution. But un-

der weak instruments this approximation is poor and we use instead the conditioning argument. 
Critical values can be calculated by Monte Carlo simulations of the conditional distribution, but 
this is numerically a very time-consuming procedure. A more accurate and quick way of arriving 
at conditional critical values was suggested in (Andrews et al., 2007). If one wishes to get rid of 
the assumptions of fixed instruments, the normality of error terms and that  is known, one should 
use the formulation of the LR statistic similar to that stated in equation (7) but with Ŝ and T̂  in 
place of S and T. Mikusheva (2010) showed that under quite general assumptions the resulting test 
is asymptotically valid uniformly over all values of the concentration parameter.

Andrews et al. (2006) examined the question of how to construct a test with optimal power 
properties while keeping it robust to weak instruments. They considered a model with fixed instru-
ments, normal errors and known . They produced a power envelope for a class of similar two-
sided tests invariant to any orthogonal rotation of the instruments. They showed that the power 
functions of the CLR test in simulations cannot be distinguished from the power envelope in all the 
cases they considered. Based on this observation they claimed that the CLR is «nearly uniformly 
most powerful» in this class and recommended the CLR for practical use.

About confidence set construction. As was mentioned in the beginning of this section, the 
problem of constructing a confidence set is dual to the problem of testing. Since we have several 
tests robust to weak instruments (the AR, the LM and the CLR) we can invert them and come up 
with the corresponding robust confidence sets. Apparently this can be done analytically for the AR 
and the LM statistics, and using a fast and accurate numerical algorithm for the CLR statistic. The 
algorithm for the inversion of the CLR test was suggested in (Mikusheva, 2010).
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Inference procedures robust to weak instruments in the case of one endogenous regressor are 
implemented in the software known as STATA (command condivreg). For more detail about the 
use of this command in empirical studies consult Mikusheva and Poi (2006).

6. Multiple endogenous regressors

If the regression has more than one endogenous regressor for which we use instrumental vari-
ables, the situation becomes much more complicated, and econometric theory currently has many 
lacunae pertaining to this case.

Let us consider the following IV regression:

Y X X ei i i i= ,*b a+ +

where both one-dimensional regressors Xi  and Xi
  may be endogenous, and we need instruments 

for both of them. The assumption that Xi  and Xi
*  are one-dimensional is inessential and needed 

only for notational simplicity. Assume that one has an r1  instrument Zi  ( r2), which is 
exogenous. We assume that the first-stage regressions are

X Z vi i= ,1 1p +

X Z vi i
*

2 2= .p +

Here potential problem is that the instruments may be weakly relevant, that is, the r2  ma-
trix [ ,  ]1 2p p  is close to having rank 1 or 0. In such a case the classical normal approximations for 
the TSLS estimator and the TSLS t-statistics both fail to provide good accuracy.

There are a number of ways to asymptotically model weak identification which correspond to 
different-weak instrument asymptotic embeddings. For example, we may assume that p1  is fixed, 
p2 = /C n  where p1  and C are both r1  fixed vectors and [ , ]1p C  has rank 2. In such a case 
we say that b is strongly identified, while coefficient a is weakly identified (the degree of weak 
identification is 1). If we assume that [ , ] = /1 2p p C n, where C is an r2  matrix of rank 2, then 
both b and a are weakly identified (the degree of weak identification is 2). In practice, however, 
one is more likely to encounter a situation where some linear combination of b and a is weakly 
identified, while another linear combination of them is strongly identified. This corresponds to 
the degree of weak identification being 1, and the case reduces to the first one after some rotation 
of the regressors.

We consider now two different testing (confidence set construction) problems: the one when we 
are interested in testing all structural coefficients jointly (H0 0 0: = , =b b a a ) and the one when 
we want to test a subset of structural coefficients (H0 0: =b b ). The literature at its current stage 
has some good answers for the former problem and contains many open questions for the latter.

6.1. Testing all structural coefficients jointly

Assume we want to test a null hypothesis H0 0 0: = , =b b a a  about both structural parameters 
b and a simultaneously. Kleibergen (2007) provided a generalization of weak-instrument robust 
AR, the LM and the CLR tests for the joint hypothesis.
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The idea here is to consider IV estimation problem to be a generalized method-of-moments 
(GMM) moment condition:

E  - - Z Y X Xi i i i( ) = 00 0
*b a

and its implied objective function, which, if evaluated at postulated ( , )0 0b a , is called the AR 
statistic, following Stock and Wright (2000):

AR
Y X X P Y X X

Y X X M Y X
Z

Z

( , ) =
( ) ( )

( ) (0 0
0 0

*
0 0

*

0 0
*

0

b a
b a b a

b a b

- -  - -

- -  - -- -a0
* ) / ( )

.
X n r

Under quite general conditions the AR statistic has a r
2 -asymptotic distribution if hypothesis 

H0 0 0: = , =b b a a  is true. The convergence holds if identification is strong and if it is weak (un-
der the full variety of weak-instrument asymptotic embeddings discussed above).

Kleibergen (2007) also contains a generalization of the LM test, known as the KLM test, which is 
robust to weak instruments. This test compares statistic KLM ( , )0 0b a  with 2

2  critical values. Kleiber-
gen (2007) also introduced a new statistic, called J-statistic, J AR KLM( , )= ( , ) ( , )0 0 0 0 0 0b a b a b a-  
and showed that it is asymptotically independent from KLM ( , )0 0b a  and has asymptotic distribution 
r-2

2  for all possible weak-instrument embeddings.
There are several generalizations of the CLR test to the case with multiple endogenous regres-

sors. Kleibergen (2007) called these generalizations the quasi-likelihood ratio (QLR) test and de-
fined it as:

QLR AR rk AR rk J rk( , ) =
1
2

( ) 4 ,0 0
2b a - + + - 





where AR AR= ( , )0 0b a  and J J= ( , )0 0b a  are the AR and J-statistics defined above, while 
rk rk= ( , )0 0b a  is the so-called rank statistic that measures the strength of identification. There 
exist several potential choices for the rank statistic, among them statistics introduced in (Cragg, 
Donald, 1993; Robin, Smith, 2000; Kleibergen, Paap, 2006). The QLR statistic should be compared 
with conditional critical values that are quantiles of the conditional distribution of the QLR statistic 
given statistic rk( , )0 0b a . The conditional distribution can be simulated using the following fact. 
Conditionally on rk( , )0 0b a , statistics KLM ( , )0 0b a  and J ( , )0 0b a  are independent and have 2

2  
and k-2

2  distributions correspondingly, while AR KLM J= + .
Kleibergen (2007) also showed that the AR, KLM and QLR tests are robust to the weak-instru-

ment problem, and they maintain good size properties. However, the power comparison between 
these three tests remains unclear, the optimal choice of the rank statistic for the QLR test remains 
unknown as well.

The robust tests can be inverted in order to obtain weak-instrument robust confidence sets. We 
should note that as a result of such an inversion one would end up with a joint (2‑dimensional) 
confidence set for b and a.

6.2. Testing a subset of parameters

In applied research we are often interested in testing a hypothesis about b only, that is, 
H0 0: =b b , or in constructing a confidence set for b while treating a as a free unknown param-
eter (the so-called nuisance parameter). This problem is widely known to be challenging from 



128 Теория и методология	 Theory and methodology

ПРИКЛАДНАЯ  ЭКОНОМЕТРИКА	 Applied  Econometrics№ 29 (1) 2013

a theoretical perspective, and solutions to it heavily rely on our willingness to make additional 
assumptions.

If a is strongly identified. Assume that parameter a is strongly identified while b may be weak-
ly identified, namely, p1 = /C n  where [ ,  ]2p C  is a fixed matrix of rank 2, i.e., instruments are 
weakly correlated with Xi  while strongly correlated with Xi

*. In such a case one can show that 
under the null hypothesis there exists a consistent estimator of a, in particular, if the null hypoth-
esis H0 0: =b b  holds true the continuously updating estimator

0 0ˆ ( ) = argmin ( , )AR
a

a b b a

is a consistent estimator of a. One also can arrive at the asymptotic distribution of this estimator. 
Kleibergen (2004) showed that this estimator can be used to construct valid tests about the 
coefficient b. In particular, if we evaluate the AR statistic at a value of a equal to 0ˆ ( )a b , in other 
words consider

0 0 0 0ˆ( ) = ( , ( )) = min ( , ),AR AR AR
a

b b a b b a

then if the null holds we have AR r( )0 1
2b  - . Notice that for the joint test of both b and a with 

the AR statistic we used a r
2  distribution. We have a reduction in the degrees of freedom in the 

case of a subset of parameter tests due to the estimation of a.
Kleibergen (2004) provided formulas for the KLM and QLR tests for testing H0 0: =b b  un-

der the assumption that a is strongly identified. The corresponding statistics are equal to the sta-
tistics for the joint test evaluated at 0ˆ= ( )a a b , while the limit distributions are corrected for the 
degrees of freedom.

No assumptions about strength of identification of a. Unfortunately, the assumption that a  is 
strongly identified is in general questionable, and as of now we do not have a viable way of check-
ing it. Hence, we need a method of testing that would be robust to the weak identification of a as 
well as the weak identification of b. The current literature contains two competing approaches.

The first approach is the so-called projection method popularised by Dufour and Taamou-
ti (2005, 2007). It is based on the following observation. Imagine that we have a test of a 5% 
size for testing the hypothesis H0 0 0: = , =b b a a , and the test compares statistic R( , )0 0b a  
with the critical value q and accepts if R q< . Then a test which accepts if min

a
b aR q( , ) <0  is a 

test of the hypothesis H0 0: =b b  with a size not exceeding 5%. Indeed, if the null H0 0: =b b  
then there exists a*  such that ( , )0

*b a  are the true parameters of the model. We always have 
min )*
a

b a b aR R( , ) ( ,0 0 , while the right side of the inequality does not exceed q with probabil-

ity 95%. To translate this approach into confidence set construction assume that we have a valid 
joint confidence set for b and a with coverage of 95%. Then the projection of this set on the b ax-
is constitutes a confidence set for b with coverage of not less than 95%. Note that for the projec-
tion method to work no assumptions about the identification of a are necessary. This projection- 
method technique can be applied to any valid test of the joint hypothesis.

By applying this approach to the AR test we end up with the AR-projection test. To test 
H0 0: =b b  we compare statistic min

a
b aAR( , )0  with quantile of r

2 . Notice that under the as-

sumption that a is strongly identified, Kleibergen (2004) uses the same statistic min
a

b aAR( , )0  

but compares it to a smaller quantile of r-1
2 . This loss of power by the projection method is the 
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price we pay for being robust to the weak identification of a. In general, the projection method is 
known to be conservative. Chaudhuri and Zivot (2008) created a procedure which improves upon 
the projection method by switching to a larger critical value when we have strong empirical evi-
dence of a being strongly identified.

An alternative to the projection method was recently suggested in (Guggenberger et al., 2012), 
where the authors considered an IV model with more than one endogenous regressor. Guggen-
berger et al. (2012) showed that if errors are homoskedastic and the hypothesis H0 0: =b b  holds 

then statistic AR AR( ) minb b a
a0 0( , )  is asymptotically stochastically dominated by a r-1

2 -dis-

tribution if a is weakly identified. Quantiles of r-1
2  can be used as critical values both with and 

without the assumption that a is strongly identified. This provides significant power improvement 
over the AR-projection method. However, we do not know if this result is generalizable to the case 
of heteroskedasticity or to any other statistic. Guggenberger et al. (2012) noted that a direct gen-
eralization of their AR result to the LM statistic does not hold.

7. Conclusions

This paper discusses recent advances in the theory of making statistical inferences in IV regres-
sion with potentially weak instruments. Weak instrument theory is currently an area of active re-
search. It has experienced some successes such as a good understanding of how to make inferences 
in the case of a single endogenous regressor. At the same time there remain many open questions. 
Among them: how to test for weak identification under heteroskedasticity, what the optimal tests 
are (in terms of power) in a model with multiple endogenous regressors, and how to find similar 
tests for hypotheses about a subset of parameters.

There are many areas close to the main theme of this paper that we do not discuss. Among them 
are the problems of finding an estimator with some optimal properties for a weak-IV model, the 
problem of many instruments, and the generalization of a weak-instrument problem to the non-
linear context known as the weakly-identified GMM problem.
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