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Copula models of economic capital  
for life insurance companies

The objective of the paper is to introduce a copula methodology of economic capital mod‑
eling, which is practically applicable for life insurance companies. Copula methods make 
it possible to address multiple dependent risk factors including both investment and under‑
writing risks in the framework of a portfolio approach. We identify a relevant set of asset and 
liability variables, and suggest a copula model for the joint distribution of these variables. 
Estimates of economic capital are constructed via VaR and TVaR calculations based on 
the tails of this joint distribution. This approach requires ARIMA and copula model selection 
followed by Monte Carlo simulation of the time series of the joint asset/liability portfolio. 
Models are implemented in open source software (R and MS Excel) and tested using historical 
and simulated asset/liability data. The results are applied to the construction of a software 
tool which can be utilized for customization and direct user application. The novelty of the ap‑
proach consists in estimating interdependent underwriting and investment risks in one mul‑
tivariate model taking into account short-term (daily or monthly) fluctuations of the market. 
In particular, we address the challenges that life insurance companies face in the low interest 
environment, using the market data for the 15‑year period 2003–2018.
Keywords: economic capital; copula model; t-copula; simulation; TVaR.

JEL Classification: C63; C65.

1. Introduction

E conomic capital (EC) as a measure of the company’s risk capital depends on a number 
of company-specific and external (both macroeconomic and industry-specific) risk vari‑
ables and formulaic model constructs. The authors use a copula approach to build a predic‑

tive model estimating the amount of economic capital a life insurance company needs to protect 
itself against an adverse movement in interest rates, mortality, and other risk drivers. Predictive 
modeling requires a study of statistical dependence between diverse risks whose dependence 
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can be expressed in terms of a joint distribution of risk variables using a copula function. Risk 
capital can then be estimated by value-at-risk (VaR) and tail value-at-risk (TVaR).

Economic capital modeling allows insurance companies to obtain better control of their 
risks and manage their business. The research paper sponsored by the SOA and Towers Perrin 
(Farr et al., 2008) outlines the general EC framework for a life insurance company and the ma‑
jor types of risk facing an insurance company. Mortality risk (including catastrophic, volatility, 
estimation, and trend risks) and interest rate risk are specified as key liability and asset related 
risks. Due to the nature of insurance products underwritten by a life insurance company, imple‑
menting EC for interest rate risk requires developing an advanced way of calculating capital 
needs for a mixture of mostly fixed-income securities with various maturities and credit qualities.

Many large insurers and subsidiaries of European insurers are using Economical Capital 
and stress testing models for solvency and high level capital planning considerations. However, 
there are many companies unfamiliar with implementing a model framework. One of the hur‑
dles for new players is representing key dependent variables by their distributions, since indus‑
try and company experience is usually stated as a deterministic best estimate value. Another 
major challenge is combining all modeled drivers of loss risk into a joint distribution. This is 
where the proper choice and use of a particular type of copula comes in. Morone et al. (2007) 
considered t-copulas for the analysis of a commercial bank portfolio of credit, market, and oper‑
ational risks. Nguyen and Molinari (2011) used Archimedean copulas to represent life, non-life, 
and health underwriting risks, while Shim et al. (2011) discuss grouped t-copulas in the prop‑
erty and casualty insurance setting. Clearly, the choice of copula model is related to the nature 
of risks and particular choice of data.

Since the financial crisis of 2007–2009, the U.S. regulators adhere to the policy of main‑
taining interest rates at a very low level by historical standards. While this policy seems to pro‑
duce a positive effect on overall economic development, it has created a challenging environ‑
ment for the insurance industry. This effect is especially pronounced for life insurance compa‑
nies struggling to gain investment returns that are sufficient for meeting their long term liabili‑
ties. Therefore our asset analysis is based on post-crisis years addressing the unique challenges 
of low interest markets.

In the period of December 2015 through December 2018, the Federal Reserve had raised in‑
terest rates nine times (see, for example, (Board of Governors …, 2019)) and signaled that it will 
continue raising rates in the nearest future. Higher interest rates would provide much needed re‑
lief to the life insurers that experienced a serious asset-liability mismatch during the last ten years 
(see, for example, (NAIC, 2018)). However, in August of 2019 the FED reversed its course and 
lowered the target rate three times bringing it back to the levels that were not seen since 2008.

There are several factors that might lead to “preserving” the low interest rate environment 
for the years to come. Among them is the sheer size of funds the Federal Reserve induced into 
the financial markets during its large-scale purchases of long-term government bonds and oth‑
er securities (quantitative easing program) in 2008, 2010 and 2012. This has created a market 
where too many dollars are chasing too few investment opportunities. The other factor is rather 
“modest” long-term economic growth expectations coming from the Federal Reserve and shared 
by the market participants (see, for example, (Klein, 2018)).

Overall, there is a clearly observed long term down slope trend for the interest rates in 
the most developed countries. The data presented in (Carletti, Ferrero, 2017) show that since 
the 1980‑s, both long-term and short-term rates have been steadily declining, dropping from 



34 Финансы	 Finance

ПРИКЛАДНАЯ  ЭКОНОМЕТРИКА  /  Applied  Econometrics2020, 58

20 percent in the 1980‑s to close to zero in U.S. and even negative in Europe. Recently, some 
U.S. economists argued (see, for example, (Goldstein et al., 2019)) that negative rates are com‑
ing to the U.S. in the nearest future.

Keeping this in mind, our research develops a practical approach to EC that would help a life 
insurance company to calculate its capital needs in the low interest rate environment. In order to 
do so, we create an asset-liability framework modeling an insurance company portfolio. Then we 
use it to demonstrate how a copula-based approach can be applied to establish economic capi‑
tal that would assist the company in sustaining an extended period of low interest rates. While 
such factors of life insurance risk as mortality and morbidity may not vary when the asset and/
or interest rate market changes, other underwriting risks, such as the number of lapses in poli‑
cies, may be interest rate market dependent.

In Section 2 we describe a one-year Economic Capital model with particular attention to sta‑
tistical aspects of model selection: choice of copula type (elliptic or Archimedean) and margin‑
al distributions of the asset and liability variables. An emphasis is made on utilizing time se‑
ries structure of the asset variables allowing one to reflect monthly changes in the market and 
simultaneous changes in such underwriting risks as lapses. Our model also allows for the uti‑
lization of expert estimates or annual summaries of liability variables in absence of more fre‑
quent time series data.

The main model assumptions and limitations are summarized in Section 3 along with the vari‑
able selection for a practical illustration. Section 4 describes an application of our model to a par‑
ticular set of nine asset and six liability variables. Time series parameters and correlation struc‑
ture of the asset variables are estimated from the 15‑year period 2003–2018 chosen to represent 
the low interest rate market environment. Development of the model framework employed for 
the project uses traditional life products to illustrate copula utility. For products with interest sen‑
sitivity, equity market or other asset/liability linkages, use of the model will require additional 
expertise from the end user that may include further correlation factor study, marginal distribu‑
tion development, use of R programming, etc. The severity of losses driving the ultimate eco‑
nomic capital levels is intended to be realistic in magnitude. As noted above, use of a low inter‑
est environment may also impact the severity of results.

When the model reflecting a particular company’s investment portfolio and product mix is 
constructed, a Monte Carlo simulation introduced in Section 5 generates multiple future scenarios 
of one-year portfolio gains/losses, based on which VaR and TVaR values are calculated. An in‑
teractive software tool allows for the adjustment of model inputs and parameters for the simu‑
lation in an Excel workbook format. Sample results of the simulation are provided in Section 6.

2. Model construction

2.1. Internal model for economic capital

Under modern insurance regulatory capital systems, like Solvency II, insurance companies 
have the option to employ an internal model for the calculation of their required capital. Here, 
we introduce an internal model which has been widely used in literature, e.g., (Christiansen, Nie‑
meyer, 2014) and (Eckert, Gatzert, 2017), including applications to life insurance (Braun et al., 
2017). In line with the Solvency II Directive, basic own fund (BOF, also known as ‘Surplus’ 
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in the U.S.) is defined as the balance sheet amounts of assets over liabilities and subordinated 
liabilities. For simplification, we assume that the insurer does not hold any subordinated liabil-
ities. Hence, the insurer’s BOF, which is the net value of assets minus liabilities, at time 0  is

	 (0) (0) (0)=BOF A L ,	 (1)

where (0)A  represents the deterministic market value of the assets at time 0, (0)L  represents the de-
terministic value of the insurer’s insurance liabilities at time 0 , which is the insurer’s total reserve 
at time 0.

Suppose the insurer makes investments into k  assets, each with an annual return rate Rj, 

=1, ,j k . The portfolio weight of the j-th asset is jw , =1, ,j k , satisfying 
=1

=1
k

jj
w . 

Based on discrete compounding, the value of an insurer’s assets at the end of the year can be 
expressed as

( ) (0)= (1 ),TA A w R

where ( )TA  represents the stochastic value of the insurer’s assets at end of the year, 1( , , ) ,kw w w    

the vector of asset portfolio weights, which satisfies 
=1

=1
k

jj
w , 1( , , )kR R R   , a random vec-

tor of asset returns.

The value of insurance liabilities at the end of the year depends on the insurer’s annual ex-
cess loss rate, where excess loss represents the difference between the actual claim amount and 
expected claim amount. Analogous to the asset side, suppose the insurer has l  lines of business, 
and each line of business has loss due to two causes. For example, the two causes for whole life 
insurance could be mortality and lapse. We define the annual excess loss rate for each business 
line and each cause as

	 , ,
, (0)

E( )
= ,j r j r

j r
j

C C
X

L


	 (2)

where ,j rX  represents the annual excess loss rate for the r-th cause of the j-th business line, ,j rC  
is a random variable representing the annual claim amount for the r-th cause of the j-th business 
line, (0)

jL  represents the reserve at the beginning of the year for the j-th business line.

The insurer’s liabilities at the end of the year, ( )TL , is the sum of its total reserve at the end 
of the year and the annual total excess loss. Here, we assume that the total reserve at the begin-
ning of the year is the same as the total reserve at the end of the year. This assumption is rea-
sonable if the insurer has a stable liability portfolio and is in a stable external environment, 
e.g., interest rate and mortality do not change. Under this assumption, ( ) (0)TL L , the change 
in the insurer’s liabilities over one year, is just the annual total excess loss. Hence, the value 
of the insurer’s liabilities at end of the year can be expressed as

( ) (0)= (1 ),TL L v X

where ( )TL  represents the stochastic value of the insurer’s liabilities at the end of the year, 
which is the sum of its total reserve at the end of the year and the annual total excess loss, 
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 1,1 1,2 2,1 2,2 ,1 ,2, , , , , ,l lX X X X X X X   , a random vector of annual excess loss rate for each busi-
ness line and each cause, 1 1 2 2( , , , , , , ) ,l lv v v v v v v    the vector of liability portfolio weights, 
where (0) (0)= /j jv L L  denotes the weight of the j -th business line, = 1, ,j l .

Hence, the insurer’s BOF at the end of the year is

	 ( ) ( ) ( )= .T T TBOF A L 	 (3)

Then, the insurer’s total loss during the one-year horizon can be expressed as

   (0) ( ) (0) (0) ( ) ( ) (0) (0)= = .T T TBOF BOF A L A L L v X A w R     

The insurer’s economic capital is the value at risk (VaR) of its total loss subject to a confi-
dence level of  99.5%  over a one-year period, that is,

	  (0) (0)
99.5%= VaR ,EC L v X A w R  	 (4)

which depends on the tails of the total loss distribution. However, due to a complex form 
of the joint distribution of  ( , )R X , it will be difficult to obtain analytical expressions for the tails 
of the distribution of total loss. Therefore, we will perform Monte Carlo simulation of N inde-
pendent copies of random vectors

	 ( , ), = 1, , ,i iR X i N 	 (5)

which can be used to estimate the tail probabilities with a threshold y  as the direct count of tail 
points

	 (0) (0) (0) (0)

=1

1
I( ) Pr( ).

N

i i
i

L v X A w R y L v X A w R y
N

       ∼ 	 (6)

The model makes some simplifying assumptions with regard to the role of reserves and 
the use of total losses vs. excess losses. Though reserves that are already established for ex-
pected losses contain conservatism, we have assumed that the release of such reserves during 
the model horizon roughly matches the expected loss component of the total loss and will ex-
tinguish the expected loss one for one. As a result, we subtract the expected loss from the total 
loss to establish the amount of unexpected, or excess loss that is the key driver of an econom-
ic capital model. Our liability loss data is thus intended to represent excess loss only, by prod-
uct and loss type.

Since a typical economic capital model horizon is one year in length, movements of reserves 
within that year are viewed as noise that may not impact the end of the year result. The excep-
tional case would be reserve changes between time 0 and time T that contemplate unexpected 
losses that are likely to occur after time T and need to be booked after time 0, but before the end 
of the year. In these cases, our recommendation is to scale up the baseline loss magnitude for 
time 0 to time T  by incorporating this characteristic into the moments of the product’s distribu-
tion or the estimated sample loss data set used. The end user is invited to explore general eco-
nomic capital theory on this topic since the future losses driving this assumption do not occur 
in the time 0 to time T interval.
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2.2. Modeling asset variables

Our goal is to build a model which will address possible fine market movements and corre‑
sponding changes in underwriting risks within one year. It is easy enough to observe asset vari‑
ables on a daily basis, however simultaneous changes in liabilities will be hard to trace. There‑
fore we suggest modeling monthly changes in asset variables, thus the one-year period consid‑
ered in the previous section corresponds to = 12T .

We use a subset of Barclay indices to serve as proxies for our asset variables representing US 
bonds of different type and duration, emerging markets, mortgage backed securities, and other 
investment instruments typical for the general account of a life insurance company. Therefore, 
we will model asset variables as the percentage returns on certain indices jP ,

	
( ) (0)

(0)= , =1, , ,
T

j j
j

j

P P
R j k

P


 	 (7)

where (0)
jP  is the initial index value (beginning of the year) and ( )T

jP  is the year-end value of the 
index.

Most of the fixed income indices are likely to exhibit autocorrelation and variable volatility. 
Therefore, we perform the conventional time series analysis as in (Ane et al., 2008) and (Han‑
sen, 1994) in order to isolate the stationary stochastic components jU , filtering out major ef‑
fects of autocorrelation (ARIMA). We have also considered GARCH filtering to address hetero‑
skedasticity, but, while having an important effect for daily data, it proved to be statistically in‑
significant on a monthly basis. Then we develop a joint distribution model of  1= ( , , )kU U U  ,  
which will be used to model 1= ( , , )kR R R  .

Let us consider times =1,2, ,t T , where the time increment will correspond to 1 month and 
= 12T  for a full year. We will start with (0)

jP  and evaluate ( )T
jP  in 12 time steps. Notice that 

this analysis can be done using end-of-the-month index values or average-of-the-month values, 
where the latter choice corresponds to the “Asian option” approach, which is becoming increas‑
ingly popular in insurance modeling. One step with =1,2, ,t T  can be decomposed into sub‑
steps (Ane et al., 2008; Kangina et al., 2016; Kniazev et al., 2016):

zz  ( ) ( 1) ( )= exp( )t t t
j j jP P S , where ( )t

jS  is the monthly log-return;

zz  ( ) ( )= ( )t d t
j jD S , where   is the difference operator, ( ) ( ) ( 1)=t t tf f f   , 

( ) 1 ( ) 1 ( 1)=d t d t d tf f f      reflecting possible non-stationarity;

zz  ( ) ( ) ( ) ( )
0 =1 =1

=
p qt t i t i t

j j i j i j ji i
D D D U        , as in ARIMA( , , )p d q ; in case of  = 0d , 

no additional differences needs to be applied, and ( ) 0 ( ) ( )= ( ) =t t t
j j jD S S ;

zz if residuals ( )t
jU  expose clear heteroskedasticity (variable volatility), an additional 

GARCH step can be introduced to address this issue; so far we have not detected a 
necessity for this step in monthly data (see the more detailed discussion in Section 3.2).

Finally, jU  is a stochastic stationary component whose distribution may be modeled by one 
of a few popular parametric families. We considered the standard normal (Gaussian) distribu‑
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tion 2(0, )N   or in the case of fatter tails and asymmetry, the skewed t-distribution introduced 
in (Azzalini, Capitanio, 2003) (an alternative is provided in (Hansen, 1994)) with density

	 1( ; , , , ) = 2 ( ) ( ),d x t y T z     	 (8)

where = ( ) /y x  , 2= ( 1) / ( )z y y   , and

 
 

 
1

2 2
( 1) 2

( ) = 1 .
2

t y y






 
 

  

Here ( )t y  and ( )T y  are the p.d.f. and the c.d.f. of a t-distribution with   degrees of free-
dom,   and   are the location and scale parameters,   is the skewness parameter, and ( )x  
is the gamma function. The degree of freedom parameter can take on any real values such that 

> 2 , which guarantees the existence of variance. The skewness parameter can take on values 
from the interval ( 1,1) . The standard normal distribution can be treated as a degenerate case 
of skewed t  with = 0 , = 1 ,   and = 0 .

This model for any = 1, ,j k  will be characterized by its own set of  5p q   ARIMA and 
skewed t -distribution parameters (subscript j  omitted):

	 0 1( , , , , , , , , , , ).p qd         	 (9)

Estimation of model parameters can be done separately for ARIMA and jU  distribution fit-
ting via MLE or Bayes estimation in the case when reasonable priors are available.

2.3. Modeling liability variables

A similar approach can be used to model liability variables if we obtain time series data 
sufficient for model calibration (estimation of parameters in (9)). In this study, in the absence 
of extensive time series liability data, we suggest a simplified model, which assumes a moving 
average (MA) monthly claim amount structure. We can then evaluate annual excess loss rates 
based on annual claim amount using (2). In absence of reliable data, there is no special reason 
to suggest a particular order of the moving average model. Therefore MA(1) model is chosen 
as the simplest option, allowing us to address month-to-month dependence in liabilities while 
staying within ARIMA framework, and also to adjust to situations, when only annual informa-
tion regarding liabilities is available.

Considering the r-th cause of loss in the  j -th business line, as defined in Section 2.1, let 
,j rC  be the annual claim amount, and ( )

, , = 1, ,12,t
j rC t   be the monthly claim amount satisfy-

ing 
12

( )
, ,

=1

= .t
j r j r

t

C C
We assume that monthly claim amount ( )

, , = 1, ,12,t
j rC t   follows a modified moving-aver-

age (MA) of order 1 model, i.e.
	 ( ) ( ) ( 1)

, , , ,=t t t
j r j r j r j rC U U   ,	 (10)

where ( )
, , = 0, ,12,t

j rU t   are mutually independent and follow a common log-normal  2
, ,,j r j r   

distribution. Hence, the annual claim amount is
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12 11

( ) (0) ( ) (12)
, , , , , , ,

=1 =1

= = (1 ) .t t
j r j r j r j r j r j r j r

t t

C C U U Ub  b   	 (11)

Including a moving average term with parameter , > 0j rb  addresses the effect of month-to-
month carryover of the claim amount. This model for any line of business =1, ,j l  and any 
cause of loss =1,2r  would be characterized by its own set of moving average parameter b and 2 
marginal distribution parameters (subscript ,j r  omitted):

	 ( , , ).b m s 	 (12)

A widely used assumption is that the sum distribution of independent log-normal random 
variables is well approximated by another log-normal random variable, see (Beaulieu et al., 
1995; Cardieri, Rappaport, 2000; Schwartz, Yeh, 1982). Hence, equations (10) and (11) imply 
that both monthly claim amount and annual claim amount approximately follow log-normal dis‑
tributions, which is consistent with many empirical studies. Wilkinson’s method, see (Schwartz, 
Yeh, 1982), estimates parameters ,j rm  and ,j rs  by matching the first and second moments, that 
is, by solving the following two equations:

  2
, , /2

, ,E( ) =12 1 ,j r j r
j r j rC em s b

    2 2
, , ,22 2

, , ,Var = 11(1 ) 1 1 .j r j r j r
j r j r j rC e es m sb  b  

In the presence of reliable data, one can assume a different autocorrelation structure on ( )
,
t

j rU  
and modify (10) accordingly. Also, instead of a log-normal model for ( )

,
t

j rU , one can consid‑
er Gamma, Weibull, or composite models which are made up by piecing together two weight‑
ed distributions at a specified threshold, see (Cooray, Ananda, 2005) and (Scollnik, Sun, 2012) 
for more details regarding fitting insurance liability data using composite models. In the case 
of composite models, the distribution of  ( )

,
t

j rU  is not preserved in ,j rC  as defined in (11).

2.4. Copula model of the joint distribution

Models for individual asset and liability variables considered in two previous subsections in‑
clude distributions of the stationary stochastic components of vector 1 1,1 ,2= ( , , , , , )k lV U U U U  .  
The first k components, corresponding to assets, will be modeled by the skewed t-distribution 
and the last 2l , corresponding to liabilities, by the log-normal distribution. However, the com‑
ponents of this vector are not necessarily independent. In the case of asset variables, it is likely 
that the correlation between components is rather strong, and moreover, their association may go 
beyond the correlation, getting stronger in the tails. Tail dependence may be successfully mod‑
eled by copulas (Frees, Valdez, 1998). In the case of some liability variables (mortality and mor‑
bidity related losses), we may assume independence from the market and, therefore, from the as‑
set variables. However, for lapse related losses we allow for a certain dependence on the mar‑
ket. Thus, we consider a general copula model for all 2k l   variables.

Assume that ( )jF u  is the c.d.f. of the j-th component jU  of the vector U. Then a copula mod‑
el is defined for the joint distribution of U as
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	 1 1 2 2 1 1 2 2( ( ), , ( )) = Pr( , , ),k l k l k l k lC F u F u U u U u       	 (13)

where C  is a special copula function with the set of parameters  . We consider copulas of two 
types.

Elliptical copulas. The elliptical distribution ,d RQ  of a random vector 1= ( , , )dt t t   can be 
defined by its joint density function

1/2 1| | (( ) ( )),k t t    

where   is a 1d  vector of means,   is a positively defined d d  covariance matrix, and ( )k x  
is some non-negative function of one variable integrable over the entire real line. Matrix R  with 
elements = /ij ij ii jjR     is the correlation matrix determining all pairwise associations be-
tween the components of the random vector t. Define also by ( )i iQ t  the marginal distribution of  it .  
Then we can define an elliptical copula as

	 1 1
1 , 1 1( , , ) = ( ( ), , ( )).R d d R d dC t t Q Q t Q t 
  	 (14)

The most popular elliptical copula is the Gaussian copula, which, combined with marginal 
distributions = ( )i i it F u  of the data vector 1= ( , , )dU U U , defines the joint distribution ( )H u  
of vector U  as

	 1 1
1 , 1 1( ) = ( , , ) = ( ( ( )), , ( ( ))),R d d R d dH u C t t F u F u     	 (15)

where ( )u  is the standard normal distribution and ,d R  is d-variate normal with zero mean, 
unit variances and correlation matrix R . Off-diagonal elements of matrix R  describe pairwise as-
sociations, so the strength of the association may differ for different pairs of components of vec-
tor U. Gaussian copulas have been widely used in finance, but proved to be inefficient in estimat-
ing the tail dependence (McKenzie, Spears, 2014).

Another popular choice of an elliptical copula is Student’s t-copula (Demarta, McNeil, 2005):

	 1 1
1 , , 1 1( ) = ( , , ) = ( ( ( )), , ( ( ))),R d d R d dH u C t t T T F u T F u 

h h h  	 (16)

where ( )T xh  is a t-distribution with h  degrees of freedom, and , ,d RT h  is d-variate t-distribution 
with h  degrees of freedom, and correlation matrix R . In our case dimensionality is = 2d k l . 
It works sufficiently well for financial applications, which encounter both lower and upper tail de-
pendence. An attractive feature of the t-copulas is a possibility to treat the correlation parameters, 
defined by the correlation matrix, and the degree of freedom parameter separately (Shim et al., 
2011). The total number of copula parameters is ( 2 )( 2 1) 2k l k l    distinct terms of the sym-
metric correlation matrix R  and one number of degrees of freedom h.

Archimedean copulas. Clayton’s, Frank’s and Gumbel–Hougaard’s copula families provide 
a valid alternative to the use of elliptical copulas for modeling joint distribution tails (Genest, 
Rivest, 1993). However, in dimensions higher than = 2d  they require additional definition 
of the hierarchical structure (vines and nested copulas being two main options, see (Shemyakin, 
Kniazev, 2017)). We will consider Clayton’s nested copula family as in (Hofert, Mächler, 2011; 
Kangina et al., 2016; Okhrin, Ristig, 2014) along with Student’s t-copula as possible choices. 
Clayton’s nested copula is built using a stepwise hierarchical procedure, such as
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1,2 2 11 2 3 1 2 3( , , ) = [ ( , ), ]C t t t C C t t tg g g 	 (17)

from Clayton’s pair copulas

	 1/
1 2 1 2( , ) = max{( 1) ,0}, [ 1;0) (0; ).C t t t tg g  g

g   g   	 (18)

The total number of parameters for a fully nested Archimedean copula is 1k l  , and could 
be higher for partially nested models and vines2.

3. Model selection

3.1. Main assumptions and limitations

The following assumptions and simplifications have to be clarified in order to better under‑
stand the scope and limitations of the suggested approach.

Assets:
zz Barclays indices are used to represent a typical investment mix of an insurance company.
zz The last 15 years of data are used for the estimation of asset and copula parameters to rep‑
resent a low-interest environment.

zz The monthly averages of daily settlement prices are used to estimate asset parameters and 
autocorrelations.

Liabilities:
zz Simple traditional products are used to represent a small company’s offerings.
zz The products used are not overly sensitive to interest rates or asset values.
zz The choice of Solvency II parameters as liability distribution drivers is somewhat arbitrary.
zz The values used for the correlation of assets and liabilities in matrix form are not verifiable.
zz Liability losses assume a degree of autocorrelation that is an expert estimate.
zz Modeled reserves are treated for simplicity as ‘stationary state’ across time.
zz Calibration of liability distributions is based on a 1 in 200 year event severity.
zz Reserve and claim relationships are based on simple product design and age grouping.
zz Experience and valuation assumptions are equivalent/simplified in some product cases.

3.2. Variable selection

Since 1973, the Bloomberg Barclays Indices (Barclays …, 2017) have been the most widely 
used indices for fixed income investors looking for representative benchmarks to measure as‑
set-class risks and returns. On August 24, 2016, Bloomberg acquired these assets from Barclays. 
Barclays and Bloomberg have partnered to co-brand the indices as the Bloomberg Barclays In‑
dices for an initial term of up to five years. The University of St. Thomas provides access to 
the Bloomberg terminal and index data are available through this for our research. We retrieved 
daily settlement data for the last 15 years in order to collect information for our study and model 
calibration. We used monthly averages of daily settlement prices. In order to replicate a typical 

2	 See https://CRAN.R-project.org/package=VineCopula.
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asset portfolio of a life insurance company, see (NAIC, 2017), we selected nine ( = 9k ) Bloom‑
berg Barclays indices (see Table 1).

Table 1. Selected Bloomberg Barclay indices

Number Ticker Index
1 LUMS(TRUU) Barclays US MBS Index
2 LUAC(TRUU) Barclays Capital U.S. Corporate Bond Index
3 EMUS(TRUU) Barclays Capital Emerging Markets Bond Index
4 LUCM(TRUU) Barclays Capital U.S. CMBS (ERISA Only) Index
5 LU35(TRUU) US Aggregate 3–5 Years
6 LU57(TRUU) US Aggregate 5–7 Years
7 LU71(TRUU) US Aggregate 7–10 Years
8 LF98(TRUU) Barclays Capital U.S. Corporate High Yield Bond Index
9 LU13(TRUU) Barclays Capital U.S. 1–5 Year Corporate Bond Index

Indices 2, 5–7, and 9 correspond to U.S. corporate bonds of various duration, indices 1 and 4 
represent mortgage backed securities (both home and commercial mortgages), index 3 repre‑
sents emerging markets, and index 8 represents high yield bonds. The mix of these nine indi‑
ces (with variable weights) can represent a wide range of investment strategies used by life in‑
surance companies. We used daily data for preliminary analysis, and then applied end-of-the-
month and monthly averages for time series model development. A monthly periodicity makes 
it possible to synchronize asset and liability data, since the latter are not likely to be observed 
on a daily basis. We selected monthly averages (similar to Asian option approach) as exhibit‑
ing the most stable patterns to implement the models described in Section 2.2 and further cop‑
ula modeling as introduced in Section 2.4. The results of the preliminary estimation are sum‑
marized in Section 3.2.

For liability modeling we selected six variables representing losses characterizing a typical 
product mix of a life insurance company.

Table 2. Selected loss variables

Number Product Source of Loss
1
2

Term Life (TL) Mortality
Lapse

3
4

Whole Life (WL) Mortality
Lapse

5
6

Disability Income (DI) Morbidity
Lapse

At this point we do not have reliable monthly time series data that would allow us to obtain 
empirical estimates of the parametric distributions for liability variables. The development of our 
sample data for liability distribution analysis is the best estimate, based upon the judgement of an 
actuary familiar with the concept of economic capital and is intended to be illustrative and not 
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necessarily indicative of any type or size of the company. Our process of the distribution elici-
tation roughly follows this procedure:

zz Start with Solvency II guidance with regard to moments and extremes of loss.
zz Use historical/anecdotal evidence from the last 200 years; companies may use 200 years 
if following the most standard approach. An example might be the Spanish flu outbreak 
of 1918 or plague outbreaks of middle age times.

zz Form an industry best practice view of outlier losses by networking or using an expert who 
has seen a number of industry models in use.

zz Select mean, standard deviation and 99.5% points for each loss distribution by product and 
loss type.

zz Using the above and best estimation, develop the distribution model and the estimates of its 
mean and variance that seem logical compared to experience with year to year losses on 
the job as well as the points selected in the previous step.

Though this approach does not produce actual data used in a consulting or company model, 
we feel that this procedure gives us a usable starting point for illustrative liability loss drivers. 
It is also key to stress that the purpose of this project is not to improve robustness of liability loss 
assumption development, but to demonstrate the use of copulas for economic capital modeling.

One of the further objectives of the project is to make the end users of our product able to en-
ter their own liability data into the model template. With this approach, if the end users obtain an 
estimate of their annual expected claim amount and its standard deviation for all business lines 
along with an estimate of reserve, they can develop a model for their particular product mix.

4. Model calibration

4.1. Parametric estimation for asset variables

ARIMA model. We begin with an ARIMA analysis of the asset variables (nine indices speci-
fied in Table 1). All procedures are implemented in R  using ‘auto.arima’ procedure from the fore-
cast package and the package rugarch3, which is convenient for diagnostics of heteroskedas-
ticity in case a GARCH component is to be added in the future. We carried out the time series 
analysis of daily settlement prices as well as monthly averages obtaining normalized residuals 

, = 1, ,jU j k . The analysis of monthly averages suggests optimal values for ARIMA parame-
ters , ,p d q . The transformation to log-returns in the construction of Section 2.2 achieves station-
arity, thus further ARIMA differencing appears to be rarely necessary; for eight out of nine indices 

= 0d . A GARCH(1,1) step does not significantly improve overall performance of the models for 
monthly averages since the effect of variable volatility is much more pronounced in the case of dai-
ly values. This can be demonstrated in Figures 1 and 2, where the time series plot of ARIMA re-
siduals is graphically compared with the ARIMA/GARCH residuals for the index LUMS(TRUU).

In Figures 3 and 4 we can compare ARIMA residuals ( )tV  with ARIMA/GARCH residuals 
( )tU  for the same index, LUMS(TRUU). Graphically, the difference between these two is not 

clearly expressed. Table 3 contains the values of ARIMA coefficients as estimated via MLE4.

3	 See https://cran.r-project.org/web/packages/rugarch/rugarch.pdf.
4	 Ibid.
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Fig. 1. LUMS(TRUU) ARIMA residuals, daily values

Fig. 2. LUMS(TRUU) ARIMA/GARCH(1,1) residuals, daily values

Fig. 3. LUMS(TRUU) ARIMA residuals, monthly averages
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Table 3. Estimation of ARIMA parameters for asset variables

Index ARIMA 0 1 2 1 2 3 4

LUMS (2,0,2) 0.009 –1.35 –0.37 1.62 0.66 0 0
LUAC (1,0,3) 0.009 –0.97 0 1.42 0.30 –0.15 0
EMUS (0,0,1) 0.007 0 0 0.52 0 0 0
LUCM (0,0,4) 0 0 0 0.60 0.04 0.022 0.40
LU35 (2,0,2) 0.008 –1.33 –0.35 1.62 0.65 0 0
LU57 (1,0,3) 0.007 –0.98 0 1.24 0.07 –0.21 0
LU71 (2,0,3) 0.001 –0.88 0.09 1.17 –0.07 –0.29 0
LF98 (2,0,3) 0.015 –0.39 –0.74 0.82 1.00 0.18 0
LU13 (1,1,3) 0 –0.98 0 0.38 –0.84 –0.32 0

Marginal distributions. Goodness-of-fit analysis was performed for the residuals Uj, and 
the p-values for both the normal and skewed t-distribution were calculated. It became clear that 
while the normal distribution provided a reasonable fit for most indices, the most interesting ones 
(EMUS related to emerging markets, LUCM related to commercial mortgage backed securities, 
and LF98 for high yield bonds) exhibit tails fatter than normal and require the use of the skewed 
t-distribution. Parametric estimates and goodness-of-fit results are shown in Table 4.

Table 4. Estimation of marginal distributions for asset variables

Index α ν ω ξ GOF skewed t GOF normal
LUMS –0.197 5.590 0.005 0.001 0.86 0.35
LUAC –0.593 4.219 0.010 0.005 0.82 0.14
EMUS –0.320 3.236 0.012 0.004 0.98 0.002
LUCM 0.036 2.335 0.008 0.002 0.77 0.003
LU35 –0.706 8.533 0.005 0.003 0.96 0.74
LU57 –0.525 4.817 0.007 0.003 0.97 0.57
LU71 –0.576 3.964 0.009 0.004 0.98 0.15
LF98 0.007 2.769 0.012 0 0.99 0.008
LU13 0.235 5.915 0.002 –0.001 1.00 0.67

Fig. 4. LUMS(TRUU) ARIMA/GARCH(1,1) residuals, monthly averages
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4.2. Parametric estimation for liability variables

For the simplified liability model (11) suggested in Section 2.3 for , , =1,2,3j rU j ; =1,2r , 
we used the 200 sample years of experience to check the goodness-of-fit of log-normal, Gamma, 
and Weibull distributions, which are satisfactory. However, composite distributions (e.g., log-
normal/Pareto) demonstrated slightly better fit of the tail values. AIC (Akaike Information Cri‑
terion) defined as

= 2 2ln ,AIC m L

where m is the total number of parameters and L  is the maximum of the likelihood function for a 
given model, was used for model comparison. The log-normal model was chosen due to the sim‑
plicity of implementation of the moving average model (11).

The results of  the parametric estimation in the  log-normal model are demonstrat‑
ed in Table 5, where parameters m and s correspond to monthly values , , =1,2,3;j rU j
=1,2r , obtained directly from estimates ,E( )j rC  and ,Var( )j rC  under the assumptions of 
, 0.1; 0.5; 0.99; =1,2,3, =1,2j r j rb = . The approach of Section 3.2 was used as suggested by 

industry consultants according to the Solvency II recommendation. Different values of  ,j rb  
lead to slightly different values for m and s.

Table 5. Estimation of marginal distributions for liability loss driver variables

Liability b = 0.1 b = 0.5 b = 0.99

m s m s m s

TL Mortality 16.36 0.183 16.05 0.185 15.76 0.186
TL Lapse 14.99 0.045 14.67 0.046 14.39 0.046
WL Mortality 14.61 0.183 14.30 0.185 14.02 0.186
WL Lapse 13.24 0.045 12.93 0.046 12.65 0.046
DI Morbidity 16.37 0.217 16.06 0.220 15.77 0.220
DI Lapse 14.78 0.045 14.47 0.046 14.19 0.046

4.3. Choice and calibration of copula

We apply copula models to the normalized residuals of the asset variables , =1, ,jU j k  
without a GARCH correction (GARCH(0,0)). The choice of a copula model and its calibration 
(parameter estimation) is carried out based on the data for asset variables, for which simulta‑
neous time series are available. Liability variables are added to the set at the next stage involv‑
ing the simulation from a copula and the estimation of economic capital (see Section 4). In or‑
der to compare the performance of Gaussian copulas, t-copulas, and Archimedean copula struc‑
tures, we will follow the model selection procedures outlined in (Gordeev et al., 2012; Kan‑
gina et al., 2016; Kniazev et al., 2016) for stock index data. At this point, the AIC analysis in 
Table 6 (the lower AIC value corresponds to the better model) suggests that, for the restricted 
set of variables =1, ,j k , the t-copula outperforms the other two classes, which is consistent 
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with the literature, see (Shim et al., 2011). We use the t-copula as the model of choice in the cur-
rent setting. However, it is possible that a more accurate choice of the Archimedean copula and 
its hierarchical structure may suggest a different model selection, when liability variables are 
included in the study.

Table 6. Copula model comparison

Copula Marginals AIC
Normal Normal

Skewed t
–12775
–12381

t Normal
Skewed t

–12847
–12984

Clayton Normal
Skewed t

–10814
–11556

Table 7 shows the estimated correlation parameters of the t-copula forming a symmetric 9 9  
correlation matrix 1R . The estimate of the copula degree of freedom parameter is = 2.4155 , 
which, in the model, is the common value for all variables. In this work, the R packages sn (Az-
zalini, Capitanio, 2003) and copula5 were applied, with a combination of generalized method 
of moments and MLE used to estimate copula parameters.

Table 7. Estimated correlations for t-copula: R1, lower triangular view

Ticker/Number 1 2 3 4 5 6 7 8 9
LUMS 1
LUAC 0.61 1
EMUS 0.46 0.81 1
LUCM 0.38 0.50 0.51 1
LU35 0.91 0.75 0.57 0.48 1
LU57 0.86 0.76 0.58 0.58 0.95 1
LU71 0.85 0.79 0.57 0.56 0.90 0.97 1
LF98 0.16 0.60 0.77 0.47 0.26 0.29 0.24 1
LU13 0.73 0.63 0.49 0.38 0.87 0.76 0.69 0.24 1

5. Simulation

5.1. Simulation from copula

We concentrate on the t-copula suggested by the model comparison in Table 6 as the best 
choice for the set of the asset variables. Applying the copula model to all 15 variables (includ-
ing liabilities) will allow us to generate month-by-month values of ARIMA innovations for as-
sets , = 1, , = 9jU j k , and MA innovations for liabilities , , = 1,2,3; = 1,2j rU j l . The values 

5	 https://CRAN.R-project.org/package=copula.
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in Section 5.2 are used to generate multiple future scenarios of the end-of-the-year development 
of our asset/liability portfolio and then, in Section 5.3, are applied to the estimation of econom-
ic capital. If all copula parameters (including the parameters of the marginal distributions) are 
defined, we can use R packages to perform this simulation.

For each asset variable = 1, , = 9j k  we have defined the set of parameters, which we can 
use in the t-copula framework: ( , , , )j j j j    . For each = 1,2,3; = 1,2j l  we have defined 
the set of parameters, which we can use in the t-copula framework: , ,( , )j r j r  . Copula param-
eters   (copula degrees of freedom) and symmetric correlation matrix R , size 15 15 , later 
defined in Table 10, are also necessary for the simulation. However, only part of the matrix 1R  
(asset correlations) is already estimated. We need additional information on liability-to-liability 
correlations and asset-to-liability correlations. The nature of the data we use to estimate liabil-
ity variables does not provide enough information for such estimation. Hence we need to elicit 
expert information to supplement our estimates from the data.

In order to establish preliminary estimates of the correlations between asset and liability vari-
ables, we will use Table 8 based on our analysis of Solvency II requirements and expert esti-
mates provided by industry consultants. These values express the idea that though it is not clear 
whether there exists an association between mortality and morbidity on one hand, and the state 
of the market on the other hand, we can safely assume that losses due to lapses will be higher 
at the lower markets.

Table 8. Correlations of asset and liability variables: R2

Liability/Index 1 2 3 4 5 6 7 8 9
TL Mortality (10) 0 0 0 0 0 0 0 0 0
TL Lapse (11) –0.1 –0.1 –0.1 –0.1 –0.1 –0.1 –0.1 –0.1 –0.1
WL Mortality (12) 0 0 0 0 0 0 0 0 0
WL Lapse (13) –0.1 –0.1 –0.1 –0.1 –0.1 –0.1 –0.1 –0.1 –0.1
DI Morbidity (14) 0 0 0 0 0 0 0 0 0
DI Lapse (15) –0.1 –0.1 –0.1 –0.1 –0.1 –0.1 –0.1 –0.1 –0.1

Similarly, expert opinion based on the Solvency II requirements suggests the correlation 
structure of liability variables summarized in Table 9. Combining symmetric matrices 1R  from 
Table 7 and 3R  from Table 9 with the  6 9  block matrix 2R  from Table 8, we construct the 
15 15  correlation matrix as suggested in Table 10.

Table 9. Correlations of liability variables: R3, lower triangular view

Liability/Index 1 2 3 4 5 6
TL Mortality (10) 1
TL Lapse (11) 0.3 1
WL Mortality (12) 0.5 0.1 1
WL Lapse (13) 0.1 0.5 0.3 1
DI Morbidity (14) 0.25 0.1 0.25 0.1 1
DI Lapse (15) 0.1 0.1 0.1 0.1 0.3 1
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Table 10. Structure of correlation matrix R

Variable 1–9 1–15
1–9 R1 R2

T

10–15 R2 R3

With these additional correlation assumptions, we use parametric estimates obtained in Sec‑
tion 3 and the R package sn (Azzalini, Capitanio, 2003) to simulate values from the skewed 
t-distribution.

5.2. Calculation of year-end values

Results. We obtain N  independent copies of the end-of-the-year values of portfolio variables 
as relative (percentage) investment gains and excess losses

	 ( , ), =1, , ,i iR X i N 	 (19)

which will be used in the final calculation of economic capital.

Inputs. We begin with the results of the simulation in Section 4.1: for each month =1, ,12t   
we define a 2 = 15k l  -dimensional vector

	 ( ) ( ) ( ) ( ) ( )
1 9 1,1 3,2= ( , , , , , ),t t t t tu u u u u  	 (20)

where = 9k  is the number of asset variables and 3 2 = 6  is the number of liability variables. In 
this array of 15 12 , all twelve columns representing months of one year are independent, and in 
each column the dependence between the rows corresponds to the t-copula structure.

Additional inputs are provided by the parameters of the ARIMA( pj, dj, qj) models estimated 
for all asset variables =1, , = 9j k  as

zz autoregressive parameters 0 1, , ,j j jp j
   , and

zz moving average parameters 1, ,j jq j
  .

For all j it holds that 2jp   and 4jq  , so that we can consider a rectangular array of pa‑
rameters size  max( ) 1 max( ) = 7 9j jp q j     substituting zeros where needed. Notice al‑
so that the differencing (integrated) parameter = 0jd  for =1, ,8j   and 9 = 1d  for the index 
LU13(TRUU). Therefore we address this index separately.

As the initial values for the ARIMA steps, we are required to obtain for asset variables 
=1, , = 9j k , the values (0) ( 1) ( 2), ,j j jP P P  . In the case of an absence of reliable information, we 

can use only (0)
jP  and make a simplifying assumption ( 2) (0)=j jP P  and ( 1) (0)=j jP P .

Assets. For the asset variables, our goal is to evaluate the percentage returns on certain in‑
dices jP ,

	
( ) (0) ( )

(0) (0)= = 1, =1, , = 9,
T T

j j j
j

j j

P P P
R j k

P P


  	 (21)
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where (0)
jP  is the initial index value (beginning of the year) and ( )T

jP  is the year-end value of the 
index. Notice that ARIMA(p, d, q) models are suggested not for index values directly, but for 
monthly log-returns

	  ( ) ( ) ( 1)= ln ,t t t
j j jS P P - 	 (22)

defined for all values of  = 1, , = 12t T , and also if needed for t = 0, -1, -2, etc. Thus equation (3) 
can be rewritten for = 1, ,9j   as

	
12

( )

=1

= exp 1t
j j

t

R S
 
 -
 
 	 (23)

and for LU13(TRUU) in the presence of differencing as

	
12

(0) ( )

=1

= exp 12 (12 1) 1,t
j j j

t

R S t D
 
  -  -
 

 	 (24)

where ( ) ( ) ( 1)=t t t
j j jD S S --  is the first difference operator. The calculation of  ( )t

jS  and ( )t
jD , to be 

plugged into (23) and (24), is provided in the subsection below.

ARIMA. Case 1 ( = 1, ,8j  , input for formula (23)): Let us consider times = 1,2, ,t T , 
where the time increment will correspond to 1 month and = 12T  for a full year. We will start 
with initial values (0)

jS  and ( 1)
jS - , and evaluate ( )t

jS  for all 12 time steps. If the initial values are 
not available, in accordance with the simplifying assumption above, take (0) ( 1)= = 0j jS S - .

The algorithm is based on the ARIMA(p,0, q) model:

	
2 4

( ) ( ) ( ) ( )
0

=1 =1

= .t t i t t i
j j ji j j ji j

i i

S S u u- -       	 (25)

We will implement 12 steps and plug in the resulting (12)
jS  values in (23).

Case 2 ( = 9j , first differences applied; input for formula (24)): Let us consider times 
= 1,2, ,t T , where the time increment will correspond to one month and = 12T  for a full year. 

Pay attention to 9 = 1p  and 9 = 3q . We will evaluate ( ) ( ) ( 1)=t t t
j j jD S S --  starting with initial val-

ue (0)
jD , and evaluating ( )t

jD  for all 12 time steps. If the initial values are not available, in ac-
cordance with the simplifying assumption above, take (0) = 0jD .

The algorithm is based on the ARIMA(1,0,3) model for differences , = 9jD j :

	
3

( ) ( 1) ( ) ( )
0 1 9

=1

= .t t t t i
j j j j ji j

i

D S u u- -     	 (26)

We will implement 12 steps and plug in the resulting (12)
jD  values in (24).

Liabilities. As follows from the simplified model (11), with the parameter values ,j r  spec-
ified in advance for all 2 = 6l  losses corresponding to product lines = 1, , = 3; = 1,2j l r , 
variables jX  represent percentage or relative year-end losses and ( )

,
t

j ru  for = 1, , = 3; = 1,2j l r  
and = 1, ,12t   are simulated values from the copula model,
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12 11

( ) (0) ( ) (12)
, , , , , , , ,

=1 =1

= = (1 ) (1 ) .t t
j r j r j r j r j r j r j r j r

t t

C u u u ub  b  b  	 (27)

Thus the results of the simulation for liability variables are directly translated into the end-of-
the-year relative liabilities jX  using the expected claim amount ,E( )j rC  and reserve amount (0)

jL :

, ,
, (0)

E( )
= .j r j r

j r
j

C C
X

L


Finally, when all ,j rX  are evaluated, the end-of-the-year gain/loss on the portfolio value can 
be calculated as a percentage of reserve

	
9 3 2(0) (12) (0)

,(0) (0)
=1 =1 =1

= = ,j j j j r
j j r

BOF BOF A
Y w R v X

L L


   	 (28)

where weights jw  can be determined by the investment mix for =1, , = 9j k  and weights jv  
by the product mix for =1, , = 3j l .

6. Numerical example

In the numerical example considered below, we take 0 0=1.1A L  to reflect the initial surplus 
of assets over reserve. Weights are allocated according to expert suggestions to represent a typi
cal asset allocation and product mix:

	 ( , ) = (0, 0, 0.08, 0.05, 0.08, 0.56, 0.16, 0.07, 0, 0.4, 0.4, 0.3, 0.3, 0.3, 0.3).w v 	 (29)

Other inputs reflect the results of parametric estimation and additional assumptions made in 
Section 3. With the number of years N set at 1000 , we obtain 1000  portfolio gain/loss values 
from which we can estimate the distribution of the one-year relative gain/loss using Monte Car‑
lo methods. Applying VaR or TVaR to this distribution, we obtain an estimate of EC as the per‑
centage of reserve. An estimate of VaR is given by the fifth worst-case scenario of the total loss 
and an estimate of TVaR is obtained by averaging the five worst-case scenarios.

Simulation was carried out in R, version 3.5.1, using R-studio, version 1.1.463 (optional). 
Inputs and outputs were written in Microsoft Excel using VBA macros. The executable code in 
R can be provided by the authors.

Let us summarize the results of multiple runs of simulation of 1000 years and compare them 
for different values of  b  in Tables 11 and 12. For simplicity, ,j rb  b  for all liability variables 
in one model. Results in Table 11 are based on the current inputs in EC Inputs and Results.xlsm, 
changing b only. Table 12 contains the results of similar calculations after applying the addition‑
al 1.8  factor to the standard deviation of total annual claims in the worksheet Liability Inputs 
of the input file. Results of 10 runs with =1000N  in each are presented in tables as averages 
and estimated standard deviations. As we see, a moderately conservative assumption in Table 12 
does not bring about substantial increase in the EC values without a change in asset assumption. 
Also, the sensitivity of EC results to the values of parameter b is limited.
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Table 11. Economic capital calculation (1000 years)

MA parameter b TVaR VaR
0.1 –0.100 

(0.020) 
–0.076 
(0.013) 

0.5 –0.101 
(0.027) 

–0.070 
(0.011) 

0.99 –0.098 
(0.016) 

–0.072 
(0.009) 

Notes. In brackets — standard deviations.

Table 12. Economic capital calculation with 1.8 loading (1000 years)

MA parameter b TVaR VaR
0.1 –0.099 

(0.013) 
–0.080 
(0.010) 

0.5 –0.102 
(0.017) 

–0.079 
(0.009) 

0.99 –0.109 
(0.016) 

–0.082 
(0.010) 

Notes. In brackets — standard deviations.

Further analysis of high-loss years demonstrates that in some cases high losses occur due to 
high mortality and morbidity, while in most cases they are driven by big dives in such invest‑
ment categories as CMBS and junk bonds. In some cases it is a combination of two factors. This 
gives an argument for the use of copula models directly addressing interdependence of loss fac‑
tors, especially in case of extreme events.

7. Conclusions

The simulation from the previous section, resulting in the EC values in Tables 11 and 12, 
allows for customization. One advantage of the model setting is the possibility to utilize monthly 
liability data if they become available. These data may be used to estimate parameters ,E( )j rX ,  

,Var( )j rX  and ,j rb  for each ,j r , and these estimates can serve as model inputs. If the credi‑
bility of these monthly loss data is limited, a Bayesian approach can be recommended to make 
use of these data along with the initial model parameters, applied in the previous subsection.

Finally, there exist further customization options. Each of these options requires the user 
to make some changes to the code applied in the model simulation.

zz Using marginal distributions for losses other than log-normal (for instance, composite log-
normal/Pareto models).

zz Using copulas other than Student’s t-copula (e.g., hierarchical Archimedean copulas).
zz Adding new classes to the asset portfolio or new products to the mix.
zz If necessary, asset and liability variables can be updated on a daily basis.
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