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Short-term forecasting of the COVID-19 pandemic 
using Google Trends data: 

Evidence from 158 countries

The ability of Google Trends data to forecast the number of new daily cases and deaths 
of COVID-19 is examined using a dataset of 158 countries. The analysis includes the compu‑
tations of lag correlations between confirmed cases and Google data, Granger causality tests, 
and an out-of-sample forecasting exercise with 18 competing models with a forecast horizon 
of 14 days ahead. This evidence shows that Google-augmented models outperform the compet‑
ing models for most of the countries. This is significant because Google data can complement 
epidemiological models during difficult times like the ongoing COVID-19 pandemic, when 
official statistics maybe not fully reliable and/or published with a delay. Moreover, real-time 
tracking with online-data is one of the instruments that can be used to keep the situation under 
control when national lockdowns are lifted and economies gradually reopen.
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Introduction

T he SARS-CoV-2 virus was initially detected in Wuhan (China) in December 2019 
(Li et al., 2020a), and then rapidly spread to all Chinese provinces and the rest of the world 
in the subsequent months. This chain of events led the World Health Organization (WHO, 

2020) to declare a pandemic for the Coronavirus disease (COVID-19) on the 11/03/2020. 
At the end of May 2020, confirmed coronavirus cases worldwide surpassed 4 million and there 
were at least 300000 deaths in more than 180 countries (ECDC, 2020).

A large literature investigated how internet search data from search engines and data from tra-
ditional surveillance systems can be used to compute real-time and short term forecasts of sev-
eral diseases, see Ginsberg et al. (2009), Broniatowski et al. (2013), Yang et al. (2015), and San-
tillana et al. (2015): these approaches could predict the dynamics of disease epidemics several 
days or weeks in advance. Besides, there is a small but quickly increasing literature that exam-
ines how internet search data can be used to predict the COVID-19 pandemic, see for example 
Li et al. (2020b) and Ayyoubzadeh et al. (2020). Moreover, to the best of our knowledge, nei-
ther formal Granger causality testing was computed to determine whether Google search data 
is useful for forecasting COVID-19 cases, nor large scale out-of-sample forecasting analysis was 
performed. The possibility to predict the dynamics of a dangerous pandemic is of fundamental 
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importance for policymakers and health officials to prevent its further spread and to evaluate 
the success of their policy actions to contain the disease.

In this study, we evaluated the ability of Google search data to forecast the number of new dai‑
ly cases and deaths of COVID-19 using data for 158 countries and a set of 18 forecasting models.

The first contribution of this paper is an evaluation of the contribution of online search que‑
ries to the modelling of the new daily cases of COVID-19 for 158 countries, using lag correla‑
tions between confirmed cases and Google data, as well as different types of Granger causali‑
ty tests. To our knowledge, this analysis has not been done elsewhere. The second contribution 
is an out-of-sample forecasting exercise with 18 competing models with a forecast horizon of 
14 days ahead for all countries, with and without Google data. The third contribution of the pa‑
per is a robustness check to measure the accuracy of the models’ forecasts when forecasting the 
number of new daily deaths instead of cases.

The rest of this paper is organized as follows. Section 2 briefly reviews the literature devoted 
to forecasting infectious diseases with Google Trends and online data, while the methods pro‑
posed for forecasting the new daily cases and deaths of COVID-19 are discussed in Section 3. 
The empirical results are reported in Section 4, while a robustness check is discussed in Sec‑
tion 5. Section 6 briefly concludes.

2. Literature review

Several authors examined the predictive power of online data to forecast the temporal dy‑
namics of different diseases. They found that these data can offer significant improvements 
with respect to traditional models: see, just to name a few, Ginsberg et al. (2009), Wilson et al. 
(2009), Seifter et al. (2010), Valdivia and Monge-Corella (2010), Zhou and Feng (2011), Yin and 
Ho (2012), Ayers et al. (2013), Yuan et al. (2013), Dugas et al. (2013), Majumder et al. (2016), 
Shin et al. (2016), Marques-Toledo et al. (2017), Teng et al. (2017), Ho et al. (2018), Gianfre‑
di et al. (2018), Santangelo et al. (2019), Li et al. (2020b).

Milinovich et al. (2014) provides one of the first and largest reviews of this literature and ex‑
plains the main reasons behind the predictive power of online data. The idea is quite simple: peo‑
ple suspecting an illness tend to search online for information about the symptoms and, if pos‑
sible, how they can self-medicate. The last reason is particularly important in those countries 
where basic universal health care and/or paid sick leave are not available.

Traditional epidemiologic models to forecast infectious diseases may lack flexibility, be com‑
putationally demanding, or require data that are not available in real-time, thus strongly reduc‑
ing their practical utility: see, for example, Longini et al. (1986), Hall et al. (2007), Birrell et al. 
(2011), Boyle et al. (2011), and Dugas et al. (2013).

Instead, internet-based surveillance systems are generally easy to compute and they are eco‑
nomically affordable even for poor countries. Moreover, they can be used together with tradition‑
al surveillance approaches. However, internet-based surveillance systems have also important 
limitations: they can be strongly influenced by the mass media, which can push frightened people 
to search for additional information online, thus misrepresenting the real situation on the ground. 
This is what happened during the 2012–2013 influenza season, when Google Flu Trends (GFT) 
overestimated the prevalence of influenza by more than fifty percent, see Lazer et al. (2014) for 
more details. Therefore, internet-based systems should not be viewed as an alternative to tradi‑
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tional surveillance systems, but rather an extension. Moreover, they can improve the ability to 
forecast the temporal dynamics of dangerous illnesses when official statistics are not available 
or available with a delay, and when official statistics may not be fully reliable.

We remark that already in the middle of 2020 there is a very large literature devoted to fore‑
casting techniques for the COVID‑19 disease. Shinde et al. (2020) provide a state-of-the-art sur‑
vey of this literature by reviewing 47 papers, including both published papers and pre-prints 
without peer-review. They categorize these papers into 4 categories: (a) Big data; (b) Social me‑
dia/other communication media data; (c) Stochastic theory/mathematical models; (d) Data sci‑
ence/Machine learning techniques. They examined each paper focusing on the specific coun‑
tries used for the analysis, the various statistical, analytical, mathematical and medical (symp‑
tomatic and asymptomatic) parameters taken into consideration in the paper, and the main out‑
comes of the paper. Interestingly, despite several useful findings, Shinde et al. (2020) highlight 
that there are still issues and challenges which need to be addressed. The first and most impor‑
tant issue is the excessive reliance on China’s dataset for model testing and forecasting, and the 
need to consider different datasets to verify “…whether the same mathematical or prediction 
model is also suitable to predict the spread and reproduction number for all the countries across 
the globe” (Shinde et al., 2020, p. 197). This was by far the most important driver behind the writ‑
ing of this paper, and which guided our research effort. Moreover, other challenges identified by 
Shinde et al. (2020, p. 197) like longer incubation period, lack of proper data, over-fitting of the 
data, overly clean data and model complexity influenced our choices in terms of model selection 
and data sources: these issues will be discussed in more details in section 3 and 4.1, respectively.

Gencoglu and Gruber (2020) were the first to try to discover and quantify causal relationships 
between the number of infections and deaths and online sentiment as measured by Twitter ac‑
tivity. This is important because distinguishing epidemiological events that correlate with pub‑
lic attention from epidemiological events that cause public attention is fundamental when pre‑
paring public health policies. However, Gencoglu and Gruber (2020) did not attempt to model 
temporal causal relationships: this was one of the main reason why we decided to consider dif‑
ferent types of Granger causality tests in our analysis, as discussed below in section 3.1.

Finally, we note that there is a strand of the literature that extends classical epidemiologic mo
dels to study the interaction between economic decisions and epidemics, see Eichenbaum et al. 
(2020a,b,c) for more details. These works abstract from many important real-world complica‑
tions to focus on the basic economic forces at work during an epidemic, and to show that “there 
is an inevitable trade-off between the severity of the short-run recession caused by the epidem‑
ic and the health consequences of that epidemic” (Eichenbaum et al., 2020a, p. 28). Given that 
these models are more intended for policy making rather than forecasting, we did not consider 
them for this work.

3. Methodology

The goal of this paper is to verify whether Google Trends data is useful for forecasting new 
daily cases/deaths of COVID-19. To this end, we will compute Granger causality tests and 
a large-scale out-of-sample forecasting analysis. Before presenting the results of the empirical 
analysis, we briefly review the theory of Granger causality testing and the forecasting models 
that we will use to predict the daily cases and deaths of COVID-19.
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3.1. Granger Causality

3.1.1. Brief review of the theory

Wiener (1956) was the first to propose the idea that, if the prediction of one time series can 
be improved by using the information provided by a second time series, then the latter is said 
to have a causal influence on the first. Granger (1969, 1980) formalized this idea in the case of 
linear regression models. In general, if a variable (or a set of variables) X can improve forecast‑
ing another variable (or a set of variables) Y, then we say that X Granger-causes Y. Otherwise, 
X fails to Granger-cause Y.

Let’s consider a general setting for a VAR(p) process with n variables,

1 1 2 2t t t p t p tY Y Y Y- - -=a+ + ++ +e ,

where   , tY a  and te  are n -dimensional vectors; i  is an n n  matrix of autoregressive param‑
eters for lag i.

The VAR(p) process can be written more compactly as,

Y BZ U= + ,

where  1,  . . . , TY Y Y=  is a  n T  matrix;  1, ,  . . . ,   pB= a    is a   1n np +  ma‑
trix;  0 1,  . . . , TZ Z Z -=  is a   1 np T+   matrix with 1[1 ]t t t pZ Y Y- + =  a  1 np+  vector; 

1( , ), TU= e  e  is a  n T  matrix of error terms.
If we want to test for Granger-causality, we need to test a set of zero constraints on the co‑

efficients: for example, the k -th element of tY  does not Granger-cause the j -th element of tY  
if the row j, column k element in i  equals zero for 1, ,i p=  . More generally, if we define 

 vec Bb=  as a 2( )n p n+  vector with vec representing the column-stacking operator, the null 
hypothesis of no Granger-causality can be expressed as

H0: 0Cb=  vs H1: 0Cb ,

where C  is an (N × (n2p + n)) matrix; 0 is an  1N  vector of zeroes; N is the total number 
of coefficients restricted to zero.

It is possible to show that the Wald statistic defined by

	  
1

1ˆ ˆˆ( )   ( ) ( )UC C ZZ C C
-

- b  b  	 (1)

has an asymptotic 2 distribution with N degrees of freedom, where b̂  is the vector of estima
ted parameters, while ˆ

U  is the estimated covariance matrix of the residuals, see Lütkepohl 
(2005, section 3.6.1) for a proof.

3.1.2. Dealing with non-stationary data: The Toda–Yamamoto approach

It is well known that the use of non-stationary data can deliver spurious causality results, 
see Granger and Newbold (1974), Phillips (1986), Park and Phillips (1989), Stock and Watson 
(1989), and Sims et al. (1990). Moreover, Sims et al. (1990) showed that the asymptotic dis‑
tribution theory cannot be applied for testing causality even in the case when the variables are 
cointegrated.
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Toda and Yamamoto (1995) introduced a Wald test statistic that asymptotically has a chi-
square distribution even if the processes may be integrated or cointegrated of arbitrary order. 
Their approach requires, first, to determine the optimal VAR lag length p for the variables in lev-
els using information criteria. Secondly, a (p + d) th-order VAR is estimated, where d is the max-
imum order of integration for the set of variables. Finally, Toda and Yamamoto (1995) showed 
that we can test linear or nonlinear restrictions on the first p coefficient matrices using standard 
asymptotic theory, while the coefficient matrices of the last d lagged vectors can be disregard-
ed. Therefore, after a VAR p d+  model is estimated, the vector of the stacked estimated pa-
rameters can be modified as   1 , , . . . ˆ ˆ, , 0p n ndvec     , where 0n nd  denotes a zero matrix 
with n  rows and nd  columns, and equation (1) can then be used. Note that there are special cas-
es when the extra lag (s) are not necessary to obtain the asymptotic 2-distribution of the Wald 
test for Granger-causality, see Lütkepohl (2005, section 7.6.3) for more details.

3.2. Forecasting methods

We will perform an out-of-sample forecasting analysis for each country, to predict the num-
ber of daily new cases and deaths using three classes of models: time series models, Google-
augmented time series models and epidemiologic models. A brief description of each model 
is reported below.

3.2.1. Time series models

Auto-Regressive Integrated Moving Average (ARIMA) models represent an important bench-
mark in time series analysis and we refer the interested reader to Hamilton (1994) for a detailed 
discussion at the textbook level. For sake of generality and interest (see section 4.1 below for more 
details), we considered models with the variables in levels, log-levels, first differences and log-re-
turns. The optimal number of lags for the auto-regressive and moving average terms were chosen 
by minimizing the Akaike information criteria (AIC). ARIMA models are important benchmarks 
in the famous forecasting competitions known as Makridakis Competitions (or M-Competitions2), 
see Makridakis and Hibon (2000) and Makridakis et al. (2020) for more details.

Exponential smoothing methods have a long tradition in the statistical literature: recent-
ly, they have witnessed a revival due to their inclusion in a general dynamic nonlinear frame-
work, which allows their implementation into state space form with several extensions, see 
Hyndman et al. (2002) and Hyndman et al. (2008). This more general class of models is known 
as ETS (Error-Trend-Seasonal or ExponenTial Smoothing), and it includes standard exponen-
tial smoothing models, like the Holt and Holt–Winters additive and multiplicative methods. 
The general structure of this framework is to decompose a time series Y into three components: 
a trend  T  which represents the long-term component of Y, a seasonal pattern (S), and an error 
term  E . These components can enter the model specification as additive terms (for example 
Y T S E + + ), multiplicative (for example Y T S E   ) or both (for example, Y T S E  + ).  
Moreover, the trend component can be decomposed into a level term (l) and a growth term (b) 
which can be “damped” by using an additional parameter 0 1 , so that five different trend 
types are possible: 1) none: hT l ; 2) additive: hT l bh + ; 3) additive damped: h hT l b +  ; 

2	 https://en.wikipedia.org/wiki/Makridakis_Competitions.
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 4) multiplicative: h
hT l b=  ; 5) multiplicative damped:  h

hT l b=  , where hT  is the trend fore‑

cast h periods out, while 
1

 
h

s
h

s=

 =  . Therefore, we can have 30 5 3 2=    possible ETS mod‑

els, see Hyndman et al. (2008) for more details.
Assuming a general state vector 1[ , , , , ,t t t t t t mx l b s s s- -=  ] where ,t tl b  are the previous trends 

components and ts  the seasonal terms, a state-space representation with a common error term 
of an exponential smoothing model can be written as follows:

   1 1t t t ty h x k x- -= + e ,      1 1t t t tx f x g x- -= + e ,
where h and k are continuous scalar functions; f and g are functions with continuous deriva‑
tives;  20,t NIDe   . The equation for yt shows how the various state variable components  
( 1 1 1, , ,t t tl b s- - -  ) are combined to express yt as a function of a smoothed forecast  1ˆt ty h x-=  with 
an error term et, while the equation for xt show how these state variable components are updated. 
The detailed equations for all the 30 possible ETS models are reported in Hyndman et al. (2008 
Tables 2.2 and 2.3, p. 21–22).

ETS models are estimated by maximizing the likelihood function with multivariate Gaussian 
innovations. Hyndman et al. (2008) showed that twice the negative logarithm of the likelihood 
function conditional on the model parameters   and the initial states  0 0 0 0 1, , , ,tx l b s s -=   and 
without constants, is given by:

 
 

 
2

*
0 12

1 1 1

; ln 2 ln
n n

t
t t t

L x n k x
k x -

= - =

 e  = + 
 
  .

The parameters  and the initial states 0x  are then estimated by minimizing  *
0  ;L x . 

The model selection is then performed using information criteria. Like ARIMA models, the ETS 
model is also an important benchmark in the famous M-competitions. Both ARIMA and ETS 
models provide good forecasts in the short term, but the quality of these forecasts quickly de‑
creases with an increasing forecast horizon.

3.2.2. Google-augmented time series models

The easiest way to include Google search data in a time series model is probably by using an 
ARIMA model with eXogenous variables (ARIMA-X), see Hyndman and Athanasopoulos (2018) for 
more details. More specifically, we employed a simple ARIMA model augmented with the Google 
search data for the topic ‘pneumonia’ lagged by 14 days. This choice was based on two consider‑
ations: first, the WHO (2020) officially states that “the time between exposure to COVID-19 and 
the moment when symptoms start is commonly around five to six days but can range from 1–14 
days”. Second, Li et al. (2020b) showed that the daily new COVID-19 cases in China lag online 
search data for the topics ‘coronavirus’ and ‘pneumonia’ by 8–14 days, depending on the social 
platform used. We chose only the searches for the topic ‘pneumonia’ because they are less affect‑
ed by news-only related searches. Even though such a simple ARIMA-X model is definitely bi‑
ased, this parsimonious model can nevertheless be of interest for forecasting purposes. Moreover, 
the capacity of Google data to summarize a wealth of information should not be underestimated, 
as shown by Fantazzini (2014) and Fantazzini and Toktamysova (2015). Similarly to the previous 
ARIMA models, we considered four ARIMA-X models with the variables in levels, log-levels, first 
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differences and log-returns. We remind the reader that Google Trends data represents the number 
of searches in Google for a topic or a keyword divided by the total amount of searches for the same 
period and region, and standardized between 0 and 100. A detailed description of how this variable 
is computed and some examples are reported in the Appendix A in the Supplementary Materials3.

A more general framework is a trivariate VAR(p) model,

 
1

, 0,
p

t i t i t t u
i

Y Y u u WN-
=

=+  +   ,

where tY  is a (3 )1 -vector containing the daily new cases of COVID-19 on day t , the daily 
Google search data for the topics ‘coronavirus’ and ‘pneumonia’ filtered using the ‘Health’ catego‑
ry to avoid news-related searches;   is an intercept vector; i  are the usual coefficient matrices 
with 1, , .i p=   Similarly to ARIMA models, we considered four possible VAR(p) with the vari‑
ables in levels, log-levels, first differences and log-returns, while the optimal lags were again se‑
lected using the Akaike information criteria. Given the small sample size at our disposal, higher-
dimensional system were not considered because VAR(p) models suffer from the curse of dimen‑
sionality (the number of the parameters is equal to 2k pk+ , where k  is the number of time series). 
Similarly, we excluded cointegrated-VAR models due to their computational problems with small 
samples and noisy Google data, see Fantazzini and Toktamysova (2015, section 4.4), Fantazzini 
(2019, section 7.6) and references therein for more details.

Unfortunately, even a simple trivariate VAR(p) can have a wealth of parameters: for exam‑
ple, if 14p= , 129 parameters need to be estimated, which may be very difficult if not impos‑
sible to do, depending on the sample size. It is for this reason, that the Hierarchical Vector Au‑
toregression (HVAR) model estimated with the Least Absolute Shrinkage and Selection Ope
rator (LASSO) proposed by Nicholson et al. (2017) and Nicholson et al. (2018) is an ideal ap‑
proach in the case of a large number of parameters and a small dataset. Let us consider again 
the previous VAR(p) process,

 
1

, 0,
p

t i t i t t u
i

Y Y u u WN-
=

=+  +   ,

where tY  is a (31)-vector containing the daily new cases of COVID-19, and the daily Google da‑
ta for the topics ‘coronavirus’ and ‘pneumonia’. The HVAR approach proposed by Nicholson et al. 
(2018) adds structured convex penalties to the least squares VAR problem to induce sparsity and 
a low maximum lag order, so that the optimization problem is given by

  
2

,
1 1

min 
T

t p t i Y
t i

p

F

Y Y- 
= =

--  +l    ,

where FA  denotes the Frobenius norm of matrix A  (that is, the elementwise 2‑norm); 0l  
is a penalty parameter;  Y   is the group penalty structure on the endogenous coefficient matrices.

We used the elementwise penalty function,

 
3 3

, 2
1 1 1

Y ij l
i

p

j l= = =

 =  ,

3	 The supplementary materials can be found on the author’s website:  https://drive.google.com/file/d/1rCxg_H8w-
CxYjfMdlAC1WbcNqEhhvt7-R/view?usp=sharing.
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which is the most general structure, allowing every variable in every equation to have its own 
maximum lag, so that there can be 23 9=  possible lag orders. The penalty parameter l was esti‑
mated by sequential cross-validation, see Nicholson et al. (2018, 2019) for the full details. We con‑
sidered the HVAR model with the variables in levels, log-levels, first differences and log-returns. 
An example of sparsity pattern with a trivariate HVAR(5) model computed with the elementwise 
penalty function is reported in Fig. 1.

Elementwise HVAR

    

Fig. 1. Example of a trivariate HVAR(5) sparsity pattern,  
computed with the elementwise penalty function. 

Active coefficients are shaded, whereas white cells denote coefficients set to zero
The HVAR model is a special case of a multivariate penalized least squares optimization 

problem, which can be solved using iterative nonsmooth convex optimization, and which has 
been recently implemented in the R package BigVAR by Nicholson et al. (2019).

3.2.3. Epidemiologic models

The SIR (Susceptible, Infected, Recovered) compartmental epidemic model, was originally 
proposed by Kermack and McKendrick (1927). Despite its relatively simple assumptions, it is 
still nowadays one of the main benchmark models in epidemiology, see Brauer and Castillo-
Chavez (2012, chapter 9) for a discussion at the textbook level.

The SIR model assumes that the population is divided into three compartments, where sus‑
ceptible is a group of people who can be infected, infectious represents the infected people who 
can transmit the infection to susceptible people but can recover from it, while recovered repre‑
sents the people who got immunity and cannot be infected again. The SIR model describes the 
number of people in each compartment using a set of ordinary differential equations:

	  ,              ,             ,  
dS IS dI IS dR

I I
dt N dt N dt

b b
=- = -g =g 	 (2)

where b models how quickly the disease can be transmitted and it is given by the probability 
of contact multiplied by the probability of disease transmission, while g models how quickly peo‑
ple recover from the disease.

Note that      N S t I t R t= + +  represents the total population and it is a constant. The ra‑
tio 0 /R = b g  is known as the basic reproduction number and it represents the average number 
of new infected people from a single infected person. The interpretation of this number is easier 
if we consider that 1 / g  represents the average time needed to recover from the disease, while 
1 / b  is the average time between contacts.

The SIRD (Susceptible, Infectious, Recovered, Deceased) model adds a fourth compartment 
to model the dynamics of deceased people:

	  ,                 ,           ,            ,
dS IS dI IS dR dD

I I I I
dt N dt N dt dt

b b
=- = -g -m =g = m 	 (3)
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where m is the mortality rate. Anastassopoulou et al. (2020) were the first to use the SIRD model 
with COVID-19 data. Even though several variants of the SIR model have been proposed, they 
require additional information that is not publicly available or available with great delay. Moreover, 
the level of numerical complexity is much higher and this may strongly penalize the efficiency 
of the model estimates: this will be evident when we will compare the SIR and the SIRD models 
in section 5. I refer the interested reader to Soetaert et al. (2010a,b) and Brauer and Castillo-
Chavez (2012) for more details about the estimation of systems of ordinary differential equations.

4. Empirical analysis

4.1. Data

The daily numbers of COVID-19 confirmed cases for over 200 countries were download-
ed from the website of the European Centre for Disease Prevention and Control (ECDC), 
which is an agency of the European Union. To the author’s knowledge, this is probably the best 
COVID-19 dataset currently available. The detailed procedure explaining how the data are col-
lected is reported below for ease of reference:

“Since the beginning of the coronavirus pandemic, ECDC’s Epidemic Intelligence team has been collecting on 
daily basis the number of COVID-19 cases and deaths, based on reports from health authorities worldwide. To in-
sure the accuracy and reliability of the data, this process is being constantly refined. This helps to monitor and inter-
pret the dynamics of the COVID-19 pandemic not only in the European Union (EU), the European Economic Area 
(EEA), but also worldwide. Every day between 6.00 and 10.00 CET, a team of epidemiologists screens up to 500 rel-
evant sources to collect the latest figures. The data screening is followed by ECDC’s standard epidemic intelligence 
process for which every single data entry is validated and documented in an ECDC database. An extract of this data-
base, complete with up-to-date figures and data visualisations, is then shared on the ECDC website, ensuring a max-
imum level of transparency” 4.

Additional comments about this dataset and other COVID-19 datasets can be found in Ala-
mo et al. (2020). We want to remark that only countries that had at least 100 confirmed cases at 
the time of writing this paper were considered (that is, in May 2020).

Following Li et al. (2020b), we also downloaded the daily data related to the two spe-
cific search terms ‘coronavirus’ and ‘pneumonia’ from Google Trends, using the time range 
01/01/2020–13/05/20. However, our Google dataset differs from Li et al. (2020b) in two as-
pects. First, we downloaded the data relative to the topics in the place of the simple keywords: 
search data for topics are cleaned automatically by Google of all searches that are not related 
to the specific chosen topic. Second, only topics data from the ‘Health’ category were consid-
ered, to avoid all news-related searches. These two filters were used to reduce the noise in the da-
ta and improve their predictive ability. Note that the use of Google topics solves automatically 
the problem of translating the keywords into local languages.

We remark that the issue of weekly seasonality, which is present in mild form both in daily 
COVID data and in Google searches, was not dealt directly because the estimation of several mod-
els would have become very difficult (if not impossible) if additional parameters were added to deal 
with seasonality. However, we tried to deal with it at least partially in two ways: first, we consid-
ered the ETS model that can model seasonality by construction. Had seasonality been an important 

4	 https://data.europa.eu/euodp/en/data/dataset/covid-19‑coronavirus-data.
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factor, ETS models would have out-performed the competitors, but this was not the case. Secondly, 
Google search data showed a very mild seasonality (people searched more on the weekends than in 
working days), so that regressing the number of daily cases/deaths against Google data was a simple 
and indirect way to deal with seasonality. More complex and sophisticated approaches to deal with 
seasonality like those employed by Franses and Paap (2004) would require much larger datasets 
that are currently not available. This is why we leave this issue as an avenue for further research.

We want to emphasize that at the beginning of the pandemic the reproduction number was prob‑
ably above unity for many (if not all) countries, so that it is very likely that the processes generat‑
ing the COVID daily data series were explosive, that is with the unit root greater than one. In such 
a case, the data are not integrable of any order (similarly to financial bubble processes), and the as‑
sumptions for the unit root tests are not satisfied, so that the critical values of the tests may not be 
valid. However, the effects on the test result strongly depend on the specific test used and the cho‑
sen alternative hypothesis (either the stationary alternative or the explosive alternative), see Hal‑
drup and Lildholdt (2002) for details. Given this issue, we decided to take a neutral stance, and the 
subsequent empirical analysis considered models for data in levels, log-levels, first-differences, and 
log-returns. In this regard, we emphasize that a large part of the epidemiologic literature does not 
deal with non-stationarity at all, see Cazelles et al. (2018) and references therein for more details5.

Following Li et al. (2020b), the first step of the empirical analysis was the computation of the 
lag correlations between the daily COVID-19 cases for each country and Google search data for 
the topics ‘coronavirus’ and ‘pneumonia’ up to a 30‑day horizon. The 30‑day horizon was cho‑
sen based on the limited size of our dataset and on past literature, see Li et al. (2020b) and refer‑
ences therein. For the sake of space and interest, we report in Fig. 2 the violin plots (that is, ker‑
nel densities + box plot) of the lags showing the highest correlation between the daily COVID-19 
cases and Google searches across all countries, for both variables in levels and first-differences. 
Instead, the highest lagged correlations together with their corresponding lags for each country 
are reported in the Supplementary Table S1 and S2, for the case of variables in levels and in first 
differences, respectively6.

Figure 2 shows that the median lag with the highest correlation across all countries is 
23 days (levels) / 17 days (first differences) for the ‘pneumonia’ topic, while it is 20 days (levels) / 
18 days (first differences) for the ‘coronavirus’ topic. In general, these results are fairly stable 
across data in levels and first differences and quite close to those reported by Li et al. (2020b), 
even though somewhat higher than the latter. In this regard, we remark again that the WHO (2020) 
states that “the time between exposure to COVID-19 and the moment when symptoms start is com‑
monly around five to six days but can range from 1–14 days”. Moreover, the fact that infected peo‑
ple may wait some time before contacting a doctor (fear of job loss, attempt to self-medicate, etc.), 
together with the objective difficulty to get tested in several countries, can explain why the lags 
with the highest correlation are generally higher than those reported for China by Li et al. (2020b).

5	 Testing for Granger causality using the Toda–Yamamoto (1995) approach should not particularly suffer from pro‑
cesses that are mildly explosive and have this feature only at the beginning of the pandemic. This follows from Haldrup 
and Lildholdt (2002), who showed that I(2) processes have properties that mimic those of explosive processes in finite 
samples, and from the fact that the Toda–Yamamoto approach is valid with processes which may be integrated or coin‑
tegrated of arbitrary order. Moreover, this approach has been found to be valid with a larger set of processes, as shown 
by the large simulation studies performed by Hacker and Hatemi (2006).

6	 The supplementary materials can be found on the author’s website.
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4.2. Granger Causality

Even though lag-correlations are a useful tool to gain a general idea about potential pre‑
dictability, it is better to compute a Granger-causality (GC) test to formally test whether 
one (or more) time series can be useful in forecasting another time series. The violin plots 
of  the  p-values for the null hypothesis that Google searches for the topics ‘coronavirus’ 
and ‘pneumonia’ do not Granger-cause the daily new COVID-19 cases, using vector auto-
regressive models with optimal lags selected with the Akaike information criteria (for both 
the variables in levels and in first differences), are reported in Fig. 3. The same figure al‑
so reports the p-values for the null hypothesis of no Granger-causality using the approach 
by Toda–Yamamoto, which is valid even if the processes may be integrated or cointegrated 
of arbitrary order.

Fig. 2. Violin plots of the lags with the highest correlations between new COVID-19  
cases and Google searches for the topics ‘coronavirus’ and ‘pneumonia’ across 158 countries, 

January–May 2020

Fig. 3. Violin plots of the p-values for the null hypothesis that the Google searches  
for the topics ‘coronavirus’ and ‘pneumonia’ do not Granger-cause the daily new COVID-19 

cases across 158 countries, January–May 2020
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The detailed p-values for the null hypothesis that the Google searches do not Granger-cause 
the daily new COVID-19 cases across 158 countries are reported in the Supplementary Table S3: 
the null hypothesis was rejected at the 5% probability level for 87 out of 158 countries using 
variables in levels, for 80 countries using variables in first differences, and for 106 countries us‑
ing the approach by Toda and Yamamoto. Therefore, there is strong evidence that lagged Google 
search data do explain the variation in the daily new COVID-19 cases for the vast majority of 
countries worldwide. It is interesting to note that when we move to an approach like the Toda-
Yamamoto methodology able to deal with non-stationarity (and potentially explosive process‑
es, given that I(2) processes mimic explosive processes in finite samples), the evidence in favor 
of Google data further increases.

4.3. Out-of-sample forecasting

The last step to evaluate the ability of Google search data to predict the COVID-19 outbreak 
was to perform an out-of-sample forecasting analysis for each country, to forecast the number 
of daily new cases using several competing models with and without Google data. Three class‑
es of models were considered for a total of 18 models:

1) Time series models with the daily number of new COVID-19 cases as the dependent variable:
a. ARIMA models with the variables in levels, log-levels, first differences and log-returns. 

Total: 4 models.
b. Error-Trend-Seasonal (ETS) model. Total: 1 model.

2) Google-augmented time series models:
a. ARIMA-X with lagged Google data for the topic ‘pneumonia’ as an exogenous repres‑

sor, with the variables in levels, log-levels, first differences and log-returns. Total: 4 models.
b. VAR models with the variables in levels, log-levels, first differences and log-returns. 

The endogenous regressors are the daily number of new COVID-19 cases and the Google 
search data for the topics ‘coronavirus’ and ‘pneumonia’. Total: 4 models.

c. The Hierarchical Vector Autoregression (HVAR) model estimated with the Least Abso‑
lute Shrinkage and Selection Operator (LASSO), with the variables in levels, log-levels, first 
differences and log-returns. Total: 4 models.
3) The SIR compartmental epidemic model. Total: 1 model.
Additional models could surely be added, but this selection already gave important indica‑

tions whether Google search data are useful for forecasting the daily cases of COVID-19. Giv‑
en the previous evidence with lag correlations and Granger-causality tests, a forecasting horizon 
of 14 days was considered. Note that precise forecasts over a 2‑week horizon can be extremely 
important for policy makers and health officers.

The data in January–March 2020 were used as the first training sample for the models’ es‑
timation, while April–May 2020 was left for out-of-sample forecasting using an expanding es‑
timation window. A summary of the models’ performances across the 158 countries according 
to the mean squared error (MSE) and the mean absolute error (MAE) is reported in Table 1, re‑
spectively, while the top 3 models for each country are reported in the Supplementary Table S4 
and Supplementary Table S5, respectively.

Google-augmented time series models were the best models for 86/89 countries out of 158 
according to the MSE/MAE (mainly ARIMA-X models and HVAR models). The SIR model 
confirmed its good name by being the top model for almost 20% of the countries examined. 
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There are no major differences between models with the variables in levels and in first-differ‑
ences, whereas models in log-levels seem to show slightly better performances across differ‑
ent models’ specifications. VAR models performed very poorly and in several occasions did 
not reach numerical convergence, due to the large number of parameters involved with small 
sample sizes.

The previous loss functions were then used with the Model Confidence Set (MCS) by Han‑
sen et al. (2011) to select the best forecasting models at a specified confidence level. Once 
the loss differential between models i and j at time t are computed (that is , , , ,  i j t i t j td L L= - ), 
the MCS approach tests the hypothesis of equal predictive ability, 0, , ,H :   E( ) 0M i j td = , for all 
,  i j M , where M  is the set of forecasting models. First, the following t -statistics are comput‑

ed,   /i i it d var d=
  

 for i M , where 1   i ijj M
d m d-


= 


is the simple loss of the i-th model 

relative to the average losses across models in the set M, 1
,1

   
T

ij ij tt
d T d-

=
=  measures the sam‑

ple loss differential between model i and j, and   ivar d


 is an estimate of  ivar d  . Secondly, 
the following test statistic is computed to test for the null hypothesis:  maxmax i M iT t = . This 
statistic has a non-standard distribution, so the distribution under the null hypothesis is comput‑
ed using bootstrap methods with 2000 replications. If the null hypothesis is rejected, one model 
is eliminated from the analysis and the testing procedure starts again.

The number of times each model was included into the MCS across the 158 countries, ac‑
cording to the MSE and the MAE, is reported in Table 2.

Table 1. Summary of the models’ performances across the 158 countries (according to the MSE 
and the MAE) for the out-of-sample period in April–May 2020

Number of times the model was
MSE МАЕ

Models 1st best 2nd best 3rd best 1st best 2nd best 3rd best
Time series models ARIMA 7 9 21 5 17 16

ARIMA.LOG 16 15 7 20 17 18
ARIMA.DIFF 11 21 22 9 16 16
ARIMA.DIFFLOG 2 4 3 0 3 5
ETS 6 6 12 7 14 11

Google-augmented
time series models

ARIMAX 9 13 17 7 11 17
ARIMAX.LOG 12 14 10 12 19 13
ARIMAX.DIFF 15 24 16 18 15 12
ARIMAX.DIFFLOG 13 3 7 8 3 7
VAR 0 0 0 0 0 0
VAR.LOG 1 0 1 1 0 1
VAR.DIFF 0 0 0 0 0 0
VAR.DLOG 0 2 4 0 3 4
HVAR 15 5 6 11 5 7
HVAR.LOG 10 12 6 19 8 9
HVAR.DIFF 7 11 8 8 5 11
HVAR.DLOG 4 5 8 5 8 8

Compartmental epidemic model SIR 30 14 10 28 14 3
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Table 2. Number of times each model was included into the MCS across the 158 countries

Loss: MSE Loss: MAE
ARIMA 145 ARIMA 127
ARIMA.LOG 147 ARIMA.LOG 131
ARIMA.DIFF 145 ARIMA.DIFF 133
ARIMAX.DIFFLOG 130 ARIMAX.DIFFLOG 116
ETS 142 ETS 122
ARIMAX 144 ARIMAX 125
ARIMAX.LOG 146 ARIMAX.LOG 130
ARIMAX.DIFF 141 ARIMAX.DIFF 129
ARIMA.DIFFLOG 133 ARIMA.DIFFLOG 115
VAR 96 VAR 76
VAR.LOG 74 VAR.LOG 59
VAR.DIFF 99 VAR.DIFF 75
VAR.DLOG 102 VAR.DLOG 90
HVAR 138 HVAR 115
HVAR.LOG 138 HVAR.LOG 127
HVAR.DIFF 138 HVAR.DIFF 121
HVAR.DLOG 134 HVAR.DLOG 116
SIR 138 SIR 116

With the exception of VAR models, almost all models were included in the MCS, thus show‑
ing that there was not enough information in the data to partition good and bad models: this out‑
come was expected given the small sample used in this forecasting exercise.

5. Robustness check: Modelling and forecasting the number of COVID-19 deaths

A common critique to the analysis of COVID-19 cases is that the number of cases could de‑
pend on the amount of testes, so that a country could have few official cases due to low testing. 
Therefore, modelling and forecasting the number of COVID-19 deaths could be a better metric 
to evaluate the forecasting ability of Google search data. We repeated the previous analysis with 
the daily deaths for COVID-19, considering only those countries with at least 100 deaths (for 
a total of 64 countries). The violin plots of the lags with the highest correlations between new 
daily COVID-19 deaths and Google searches for the topics ‘coronavirus’ and ‘pneumonia’ is re‑
ported in Fig. 4. The violin plots of the p-values for the null hypothesis that the Google searches 
for the topics ‘coronavirus’ and ‘pneumonia’ do not Granger-cause the daily COVID-19 deaths 
across 158 countries is reported in Fig. 5.

Figure 4 shows that the median lag with the highest correlation across all countries is 28 days 
(levels) / 19 days (first differences) for the ‘pneumonia’ topic, while it is 26 days (levels) / 
18 days (first differences) for the ‘coronavirus’ topic: the highest correlations in levels take place 
approximately 1 week later that those for the confirmed cases, which makes sense from an epi‑
demiologic point of view.

The null hypothesis that the Google searches do not Granger-cause the daily new COVID-19 
deaths across 64 countries was rejected at the 5% probability level for 40 countries using variables 
in levels, for 30 countries using variables in first differences, and for 42 countries using the ap‑
proach by Toda and Yamamoto. Therefore, there is strong evidence that lagged Google search data 
do explain the variation in the daily new COVID-19 deaths for most of the countries examined.
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The out-of-sample forecasting analysis involved again the previous 17 time series models, 
but they used the daily number of new COVID-19 deaths as the dependent variable, instead. 
As for epidemiologic models, we considered two variants:

a) the SIR model described by the system of equations (2) where the number of infected 
is substituted with the number of deaths, thus implying that the mortality rate for those infected 
is 100%. This is clearly a biased (and unrealistic) model, but it has a benefit to be numerically 
more efficient than more complex epidemic models. Moreover, it can be interpreted as a shrink‑
age estimator, see Lehmann and Casella (1998);

b) the SIRD model described by the system of equations (3), which is a benchmark model 
in epidemiology when both people infected and deaths have to be modelled.

A summary of the models’ performances across the 64 countries according to the mean 
squared error (MSE) and the mean absolute error (MAE) is reported in Table 3.

Fig. 4. Violin plots of the lags with the highest correlations between daily COVID-19 deaths  
and Google searches for the topics ‘coronavirus’ and ‘pneumonia’ across 158 countries,  

January–May 2020

Fig. 5. Violin plots of the p-values for the null hypothesis that the Google searches for the topics 
‘coronavirus’ and ‘pneumonia’ do not Granger-cause the daily COVID-19 deaths  

across 158 countries, January–May 2020
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Google-augmented time series models were the best models for 38/39 countries out of 64 
according to the MSE/MAE (again ARIMA-X models and HVAR models). There is no major 
differences between models with the variables in levels and in first-differences, but ARIMA-X 
models in first differences seem to show better performances than competing models. VAR mod‑
els performed again very poorly. The SIR and SIRD model were the top models for approximate‑
ly 18% of the countries examined: interestingly, the SIR model performed better than the SIRD 
model, thus confirming again that in some cases efficiency is more important than unbiasedness.

The number of times each model was included into the MCS across the 64 countries — 
according to the MSE and the MAE — is reported in Table 4.

Similarly to the baseline case, almost all models were included in the MCS (with the excep‑
tion of VAR models, and the SIRD model to a lower degree), thus showing again that there was 
not enough information in the data to separate good and bad models.

6. Conclusions

Google Trends data for the topics ‘coronavirus’ and ‘pneumonia’ filtered using the ‘Health’ 
category proved to be strongly predictive for the number of new daily cases and deaths 
of COVID-19 for a large set of countries. Google data can complement epidemiological mod‑
els during difficult times like the ongoing COVID-19 pandemic, when official statistics maybe 
not fully reliable and/or published with a delay. Policymakers and health officials can use web 
searches to verify how the pandemic is developing, and/or to check the effect of their policy 
actions to contain the disease and to modify them if these policies prove to be unsatisfactory. 

Table 3. Summary of the models’ performances when forecasting the daily deaths 
for COVID-19 across the 64 countries (according to the MSE and the MAE)  
for the out-of-sample period in April–May 2020

MSE МАЕ
Models 1st best 2nd best 3rd best 1st best 2nd best 3rd best

Time series models ARIMA 5 11 6 2 9 8
ARIMA.LOG 1 2 3 2 8 6
ARIMA.DIFF 5 7 7 7 6 8
ARIMA.DIFFLOG 2 7 3 1 5 4
ETS 2 0 0 1 2 2
ARIMAX 3 5 8 8 3 3
ARIMAX.LOG 1 1 4 2 5 5
ARIMAX.DIFF 17 7 5 13 10 3
ARIMAX.DIFFLOG 4 4 2 5 1 1

Google-augmented VAR 0 0 0 0 0 0
time series models VAR.LOG 0 0 0 0 0 1

VAR.DIFF 0 0 0 0 0 0
VAR.DLOG 1 0 1 0 1 1
HVAR 5 2 4 6 4 2
HVAR.LOG 1 2 0 1 1 1
HVAR.DIFF 4 4 6 1 5 7
HVAR.DLOG 2 4 6 3 2 5

Compartmental epidemic model SIR 8 7 9 11 2 7
SIRD 3 1 0 1 0 0
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This is particularly important now that several countries have decided to reopen their economies, 
so that real-time tracking with online-data is one of the instruments that can be used to keep 
the situation under control.

Even though some models performed better than others did, these forecasting differences 
were not statistically significant due to the small samples used. An avenue of future research 
would be to consider larger samples and forecast combination methods, following the ideas 
discussed by Clemen (1989), Timmermann (2006), Hsiao and Wan (2014), and Hyndman and 
Athanasopoulos (2018).
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Appendix A: Google Trends

Google Trends is a website (https://trends.google.com) that reports the standardized volume 
of Google searches for a keyword or a topic. The data can be filtered according to search type 
(for example, web, videos, images), search category (there are 25 categories and 288 subcate‑
gories), geographic location, and time range.

Google Trends calculates the ratio of the number of online searches for a specific keyword/
topic K in a given geographical region a on a particular day t (Ka, t), to the total amount of search‑

es for the same day and region (Ta, t): 
,

,
,

a t
a t

a t

K
R

T
= .

The resulting time series is divided by the value of the day in which it reaches the maximum 
level, and multiplied by 100. Therefore, the Google index (GI) for a specific keyword/topic K, 

on day t, and in area a is given by, , , ,
,

100
max ( )K a t a t

t a t

GI R
R

= .

We remark that Google Trends data are computed using a sampling method, so the results 
can slightly differ if the data are downloaded on different days. A possible way to decrease the 
sample variability is to compute the GIs as the simple average of different data downloads, 
carried out over different days and/or with different IPs. However, given the large dataset in‑
volved dealing with almost 200 countries and several topics, we decided to use the raw da‑
ta coming from the single downloads: similarly to Fantazzini and Toktamysova (2015) and 
D’Amuri and Marcucci (2017), we found that using the raw data does not alter the final re‑
sults, because the elementary time series are nearly identical, with cross-correlations that are 
never below 0.99.
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Google Trends tracks only queries with a minimum volume due to privacy considerations: 
if the search volume is insufficient, a value of zero is reported7. The data are available from 
an intraday time-frequency up to a monthly frequency, depending on the selected time range. 
Google Trends allows comparing the search volumes of up to five search terms, or up to a maxi‑
mum of 30 search terms grouped in a single entry using quotation marks (to return searches that 
match an exact expression), and using the “+” or “–” signs between the search terms to include 
or exclude search terms, respectively. The data are available since 2004, for several countries 
and their regions, see https://support.google.com/trends for more details.

Finally, it is important to note that the longer is the time sample selected, the lower is the fre‑
quency provided by Google Trends (the lowest frequency possible is monthly data). Given that 
we downloaded the data for only 5 months (from January 2020 till May 2020), our data consists 
of daily GIs. However, we want to remark that long datasets of high-frequency data can be eas‑
ily obtained by chaining together several small samples of high-frequency data using a longer 
sample of low-frequency data. An example of the Google Trends interface to download the dai‑
ly data for the topic of “Pneumonia” searched in Russia from the 01/01/2020 until the 13/05/2020, 
and filtered with the Health category is reported in Fig. A1.

Of course, the manual download of the GIs for all countries and topics would have been too 
cumbersome, so that it was executed using an R script and the gtrendsR package.

7	 In the case of zero values, the GIs were linearly re-scaled using a small positive constant, following the approach 
proposed by Fantazzini and Toktamysova (2015). The same method was employed in the case of zero values for 
COVID-19 cases.

Fig. A1. Google Trends data for the topic “Pneumonia”, searched in Russia, filtered using 
the Health category. Sample: 01/01/2020–13/05/2020


