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Changes in commodity prices can be transmitted directly to the real economy through chang-
es in the marginal cost of production. Therefore, it is extremely important to create some
mechanism to protect against these movements in the commodities futures market. Exposure
in this market comes along with tail risk, which must be measured and controlled using a risk
measure. To help economic agents, this research provides a common statistical specification
that can be used to reliably predict the Value-at-Risk of four important energy commodities.
For this, the predictions of a range of 48 competing models, composed of four heteroskedas-
tic specifications, six conditional distributions, and a Markov chain with up to two regimes,
were compared using various statistical tests, and the model with the best average results
was preferred.
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1. Introduction

ommodities are used as basic raw materials in the production of many goods for the econ-

omy. For this reason, Garratt, Petrella (2021) and Lin et al. (2021) warn that commodity

price changes can be transmitted directly to the real economy through changes in the mar-
ginal cost of production and consequently cause changes in the aggregate price level (see, also,
(Chen et al., 2020)). These price changes can impact interest rates (Cepni et al., 2021; Coletti et al.,
2021), exchange rates (Albulescu, Ajmi, 2021, Wang et al., 2022), and also the economic growth
of countries (Boateng et al., 2022; Herrera et al., 2019; Liaqgat et al., 2022; Mohaddes, Pesaran,
2017; Wang, 2022), although differently, as Liu, Serletis (2021) point out. Among all the inputs,
Cepni et al. (2021) and Gong et al. (2022) reveal that oil is one of the main determinants of eco-
nomic aggregates and deserves to be highlighted. This makes sense, since increases in oil prices
can cause increases in the production costs of goods that use large amounts of energy or are di-
rectly derived from it (Lin et al., 2021). As a consequence, pressures in other relevant sectors
of the economy can be observed (Coletti et al., 2021). For example, Chowdhury et al. (2021) point
out that increases in oil prices can cause food prices to rise. Hanson et al. (1993) link this move-
ment to the impact that the price of oil has on the prices of fertilizers, chemicals, transportation,
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and other inputs. While Chen et al. (2010) believe that the increase in food prices can be ex-
plained by the increased demand for corn and soybeans for biofuel production as substitutes for oil.
Generalizing these facts, Le et al. (2020) show that oil price fluctuations have a significant impact
on the prices of other energy commodities, thus evidencing a dependency relationship between
their prices. This line of reasoning indicates that there may be a direct contagion effect from oil
prices to other commodities (Chowdhury et al., 2021) and this has an impact on the entire indus-
trial chain, affecting the macroeconomy as a whole (Lin et al., 2021).

Since oil price fluctuations can have undesirable consequences for the economy, it is of utmost
importance that economic agents set up some sort of protection mechanism against significant vari-
ations in their prices. By doing so, for example, companies dependent on this commodity, either
directly or indirectly, can mitigate market risks and gain competitive advantages over their com-
petitors. This observation is also valid for individuals who include oil and its derivatives in their
consumption baskets (Coletti et al., 2021; Devaguptapu, Dash, 2021) and want to maximize their
utility functions. In addition, companies, farmers, investors, investment funds, and the like can
also benefit from these protection mechanisms to reduce the market risk of their conventional fi-
nancial positions (see, as an example, (Ben-Salha, Mokni, 2022; Enwereuzoh et al., 2021; Ji et al.,
2020a, b; Kuang, 2022; Liu, Guo, 2022), since commodity prices tend to behave inversely to eco-
nomic activity. In all these examples, exposure in the commodities futures market becomes advis-
able to build a protection mechanism, but it should be done with care. Derivatives prices are very
volatile (Garratt, Petrella, 2021) and having an exposure in this market involves important risks
that should be considered by economic agents. One of them is the risk of extreme events occurring
that can cause high financial losses, known as tail risk. Controlling this risk is essential within ac-
tive risk management. One way to accomplish this task is to use risk measures that are based on
the quantiles of a distribution, such as Value-at-Risk (VaR) (Bello et al., 2020). VaR is a powerful
tool, but to calculate it accurately requires some effort. In its parametric form, the essence of VaR
measurement involves knowing the volatility of the financial asset and the statistical probability
distribution of its data. Although it seems simple, having this information is not an easy task, since
there are many different models that can be used to estimate volatility and there are many alterna-
tive probability distributions available.

Over the past few years, the academic literature has been trying to help economic agents
make these choices by providing empirical references that can improve the measurement of VaR.
It is quite common to find studies on this topic in assets traded on stock exchanges, see, for example,
(Alemohammad et al., 2020; Ardia et al., 2018; Basatini, Rezakhah, 2020; BenSaida et al., 2018;
Mwamba, Mwambi, 2021; Paolella et al., 2019; Sampid et al,. 2018; Segnon, Trede, 2018; Wang et
al., 2021; Zolfaghari, Sahabi, 2017). It is also common in cryptocurrencies and exchange rates, see
(Ardia et al., 2018, 2019; Caporale, Zekokh, 2019; Chkili, 2021; Maciel, 2021; Segnon, Bekiros,
2020; Siu, 2021; Tan et al., 2021; Wu et al., 2020). But for commodities, studies on this topic are
not common, although they do exist. For precious metals, see (Owusu Junior et al., 2022). For oil
exclusively, see (Lyu et al., 2017; Salisu et al., 2022). For commodities in general, see (Amaro et al.,
2022; Herrera et al., 2017; Laporta et al., 2018). All these works seek to point out ways for economic
agents to make the most coherent decision on how to measure the VaR of their financial assets.

This study follows that same path, but with some important innovations to the academic liter-
ature, namely:

(a) Database. In addition to energy commodities, this research investigates agricultural com-
modities that can be used to produce biodiesel, which is considered one of its substitute goods.
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Thus, this paper covers commodities that are little mentioned in the literature, but that are essen-
tial for good risk management. This contribution is important because it seeks to offer previously
insufficiently studied alternatives for economic agents to carry out their financial operations or
to better understand the behavior of the energy market.

(b) Common statistical specification for both commodities. To the best of our knowledge,
this is the first work that seeks to provide a common statistical specification that can be reli-
ably used for VaR forecasting for all the commodities studied. For this, a performance ranking
is created for all competing specifications by means of the measured prediction accuracy statis-
tics, and the best rated one is chosen. The central idea is to find the statistical specification that
has the best average forecast quality for all commodities. This contribution is important because
it simplifies the work of economic agents who have computational limitations to perform com-
plex calculations.

(c) Modeling and estimation. This research investigates the combined use of different hetero-
skedastic models with different probability density functions, employing both single and multiple
regimes, in estimating the conditional volatility used in VaR forecasting. Here, the contribution
covers three fundamental pillars:

(1) whether heteroscedastic models with more complex mathematical structures are more ef-

ficient than models with simpler structures;

(i) whether the use of Markov chains improves the estimation results. Ardia et al. (2018,
2019), Caporale, Zekokh (2019) and Segnon et al. (2017), for example, show results favor-
ing their use, while Chkili (2021) and Sampid et al. (2018) show results contrary to this;

(ii1) whether more complex statistical probability distributions provide more appropriate results
than the normal distribution in predicting VaR.

The overall contribution of this paper is to assess all these points together using appropriate
computational methods and to point out the most suitable statistical specification to be used in mea-
suring the VaR of both energy and agricultural commodities.

This paper proceeds as follows: Section 2 presents the statistical specifications and methodol-
ogy used, Section 3 exposes the database and discusses the empirical results found, and finally,
conclusions are reported in Section 4.

2. Specification and methodology

The measurement and evaluation of VaR quality is performed in four steps according to a uni-
variate parametric structure, namely:

(1) The statistical model that describes the dynamics of log-returns of time series is defined.
In this research, we define 48 different specifications of the Markov-switching GARCH model
of Haas et al. (2004), composed of four scedastic specifications, six conditional distributions,
and a Markov chain with up to two regimes.

(2) The model parameters for a given estimation window are estimated and the distribution
of day-ahead log-returns is calculated. Here, similar with the procedures adopted by Gerlach,
Wang (2020), Wang et al. (2019) and Wu et al. (2020), we employ a rolling window approach,
with a fixed sample size of 5,000 observations, to perform the parameter estimates at each pre-
diction step. We set the total number of predictions for each model at 250, which represents 5%
of the fixed size of the established rolling window. This choice was made arbitrarily, justifying itself
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by presenting enough, without jeopardizing the parameter estimation period, to measure the fore-
cast performance of the models. Thus, in total we made 48000 forecasts, consisting of 12000
(250x 48) forecasts for each commodity.

(3) The VaR is measured from the distribution of log-returns calculated in the previous step.
For this, we use the 99% confidence level that the Basel III Capital Accord of Basel Committee
on Banking Supervision (2011) recommends that banks adopt and we also consider the 97.5%
and 95% levels. With these three confidence levels, we total 144000 (48000X 3) VaR estimates.

(4) The quality of the ex post VaR forecast is evaluated through statistical procedures, which
are called backtesting. This subject is discussed in more detail in Section 2.3.

2.1. Markov-switching GARCH model specification

The implementation of the Markov-switching GARCH (MSGARCH) model requires the vari-
able of interest y, to assume the following moment conditions: E|: y,] =0 and E|: Y, yt_l] =0
for all #>0. Therefore, we define y, ER as the log-return of commodities at time ¢, with
V= log(E /P, ) , where P, is the price at ¢, and assume that y, has mean zero and is not serially
correlated. With these conditions, the general specification of the model, according to (Ardia et al.,
2018), can be expressed through the following mathematical expression:

v (s, =) ~D(0.h,,.8,), (1)

where Z,_, is the set of information observed up to time ¢—1, thatis, Z,_, = { V1> 0}, and
D\0,%,,.& k) is a continuous distribution with zero mean, time-varying variance /%, , and addition-
al shape parameters gathered in the vector &,, such as tail and asymmetry. We also define the stan-
dardized innovations as 7, , =y, / h? ~iid. D(O ,& ,c) Furthermore, it is assumed that the la-

tent variable s,, defined in the discrete space {1,...,K}, evolves according to an unobservable
K

1/1,

—z] is the transition probability from the state s,_, =i to s, = j.

first-order homogeneous ergodic Markov chain with transition probability matrix P = { D, ]}

where p, ; =Pr|:s, =jls

t—1
In addition, 0< p, ; <1 Vi,je{l,....,K} and 2 _ P =1, Vie{L,...,K} are the restrictions
: i P

of the model. Thus, given the parameterization of A D(:), we have E[ s, = k,IH] =h,,, that

is, A, is the conditional variance of y, in the realization of s, =k and the information set Z,_,

According to (Haas et al., 2004), the conditional variance of y, is assumed to follow a GARCH
process and thus, conditional on the regime s, =k, h,, is evaluated as a function of y, |, /
and 0, , which represent, respectively, the past observations, the past variances and the additional
regime-dependent vector of the parameters, according to the expression:

hk,t = h(yt—l ’hk,t—l H Ok )5 (2)

where 4(-) is a measurable function of Z,_,, which defines the filter for the conditional variance
and also guarantees its positivity. Furthermore it is assumed that 7, , = h (k=1,...,K), where
h is a fixed unconditional variance level for regime k. Thus, dependmg on the specrﬁcatlon of
h( -), different scedastic specifications are obtained. Even single regime (SR) GARCH models
can be obtained by means of 4(+) when we set k =1. In this research, four different specifications
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for the conditional variance are considered. The first refers to the ARCH model of Engle (1982),
given by:

by, =y, +a1,kyt2—l 5 (3)

to k=1,...,K . In this case, we have 6, = (aoqk,alyk )T. a,, >0 and a,, >0 are the conditions im-
posed for positivity of the model and the stationary covariance of each regime is obtained assuming
that «,, <1. The second specification refers to the GARCH model of Bollerslev (1986), given by:

b, =a, +al,kyt2—l +ﬁkhk,t—1’ 4

to k=1,...,K. In this case, we have 6, =(a0,k,alqk,ﬁk)T. >0,a,>0 and B, =0 are
the conditions imposed for positivity of the model and the stationary covariance of each regime
is obtained assuming that &, + 8, <1. The third specification used by us refers to the eGARCH
model of Nelson (1991), given by:

log (hk,t ) =, tay, (| My | —E [| N i1 |]) +a,, Y By 1Og(hk,t—] ) > (5)

to k=1,...,K, where the expectation E[| Meumt |] is given with respect to the distribution condi-

tional on the k& regime. In this case, we have 0, = (ao’k,al,k,az’k,ﬂk )T. The parameters have no
restrictions imposed on the positivity in the conditional variance, since the model uses a logarith-
mic specification to be estimated, preventing the variance from being negative. Already the sta-
tionary covariance of each regime is obtained assuming that 8, <1. Finally, the fourth specifica-
tion used refers to the girGARCH model of Glosten et al. (1993), given by:

2
hk,t =a,, t+ (al,k + a2,kl(yt—l < 0)))’:—1 + ﬂkhk,t—l > (6)
to k=1,...,K, where 1(*) is a binary indicator that takes the value one if the condition (-) is valid
and zero otherwise. In this case, we have 0, = (ao’k SO Oy s By )T. The parameter a,, controls

the degree of asymmetry for the conditional volatility response to the past shock in regime k. The po-
sitivity condition requires that «,, >0, @, >0, a,, =0 and B, =0. Furthermore, the station-

ary covariance of each regime is obtained by requiring that «, , + azvkE[ni)tl(n i < 0)] + 8, <l.

Now, to complete the specifications of the models presented, we need to define the conditional
distribution of the standardized innovations 7, , . In this paper, we consider six different distri-
butions, namely: the standard normal distribution (norm), the standardized Student-¢ distribution
(std), the standardized generalized error distribution (ged), and the standardized skewed versions
of norm, std and ged, denoted respectively by snorm, sstd and sged. The asymmetric versions are
obtained following the procedures adopted by Bauwens, Laurent (2005) and Fernandez, Steel
(1998). Finally, we expose in this section the combinations performed to obtain our set of com-
peting models consisting of 48 different specifications. We combine: (i) the number of regimes,
k € {1, 2}, where we obtain a single regime (SR) specification when k£ = 1, and Markov-switching
(MS) when k£ =2 (ii) the specification of the scedastic function, which we define as ARCH,
GARCH, eGARCH and gjrGARCH; and (iii) the specification of the conditional distribution,
D € {norm, std, ged, snorm, sstd, sged}.
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2.2. Model estimation

To estimate the MSGARCH model of equation (1), we first need to write its likelihood func-
tion by regrouping the model parameters into ¥ = (91,5 1reees0,8 K,P). The conditional density
of y, in state s, =k given W and Z _, is denoted by f D( v |s,=kWY,7,_ ) Then, integrating
the state variable s,, we obtain the dens1ty of y,in state s, =k given W and Z, _, only:

K K
FGAWZ )= pom S Dy, 15, =1, W.Z,.,), (7)

=l j=1

where 7, = Prl:sf_I =i |‘P,It_1:| represents the filtered probability in state i at time 7—1, ob-
tained by means of Hamilton’s filter. For more details, see Hamilton (1989) and Hamilton (1994,
Chapter 22). With this, the likelihood function is obtained from equation (7) as follows:

Hf W, (8)

where f ( | ‘I’,I,_l) represents the density of y,, given the past observations Z,_, and the model
parameters W. Therefore, to estimate the model parameters we use the maximum likelihood esti-
mator W obtained by maximizing the logarithm of equation (8).

2.3. VaR predictions and accuracy

The VaR specification, valid for any probability distribution function, discrete or continuous,
can be expressed using probabilistic terms. Since y, represents the log-returns of a financial asset
at time ¢, the VaR” in the (1— ) percentile is defined by Pr ( y = VaRt“) = a, which calculates
the probability that the log-return at time ¢ is less than or equal to VaR”, given a significance level
a €(0,1) . In other words, VaR measures the threshold value such that the probability of observing
a loss greater than or equal to it over a given time horizon is equal to « (see (McNeil et al., 2015)
for more details). In this paper, we calculate VaR in its parametric form, using day-ahead volatility
forecasts obtained by MSGARCH models. For this, we first compute the conditional probability
density function (pdf) one step ahead of y,,, as a mixture of K regime-dependent distributions:

K
f(yT+l |1I’,IT)=E.7tk’T+1f’D(yT+1 | 741 =k,IIJ’IT), ©)

k=
P 1
where 7, ., = Ep,.’knw is the mixing weights with #, . = Pr[sT =i |1I’,IT:| (i=1,...,K) being
i=1
the filtered probabilities at time 7. With equation (9) we can obtain the cumulative density func-
tion (cdf) as follows:

a9, Z)=[""1 (2| W, 7, )dz. (10)
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Here, we compute equations (9) and (10) easily by replacing W with the maximum likelihood
estimator W. With this, we can perform the VaR forecast for 7 +1 at risk level « by:

VaRy,, =inf{yr+1 = R|F(yT+1 |IT)=a}7 (11)

where F ( | IT) is the one-step ahead cumulative density function (cdf) evaluated in y (see
(Ardia et al., 2018) for more details on calculations). We use equation (11) to perform the VaR pre-
dictions in each competing heteroskedastic model considering risk levels of 1, 2.5 and 5%. After
that, we conducted performance tests of the models, to analyze both the accuracy of the predic-
tions and the accuracy of the left tail distribution. We start by calculating the proportion of returns
in the forecast period that exceed the level of the forecasted VaR. For this, we use the VaR viola-

n+m
tion rate, defined by VRate = 1 2 I( v, <VaR' ), where n is the in-sample size and m is the out-
t=n+l

of-sample size. Models with VRate values closer to the level of the set nominal quantile ¢ are pre-
ferred. Regarding models that present a VRate with the same absolute distances at the nominal
quantile level, we follow Gerlach, Wang (2020) and Wang et al. (2019) and choose the conserva-
tive one as preferred. For example, 0.95% is preferred over 1.05%. Note that having a VRate close
to a is a necessary but not sufficient condition for a predictive model to be accurate. Therefore,
we complement this analysis by employing the following tests, commonly used in the litera-
ture: the unconditional coverage (UC) test of Kupiec (1995), the conditional coverage (CC) test
of Christoffersen (1998), and the dynamic quantile (DQ) test of Engle, Manganelli (2004), with
4 lags, as did Maciel (2021). In addition, we follow Mcaleer, Da Veiga (2008) and calculate
the mean absolute deviations (ADmean) between the observations and the quantiles, which pro-
vides a measure of the expected loss given a VaR violation. Models with lower ADmean are pref-
erable. As if that were not enough, we also applied the quantile loss function (QL) of Gonzalez-
Rivera et al. (2004), which provides a weighted average of the difference in observed returns rel-
ative to the VaR value, giving greater weight to losses that violate the VaR level. Formally, given
a VaR forecast at a risk level a for time ¢, QL is defined as: QL' = (a =17 )( v, = VaRf’), where
17 =1(y, <VaR). Moving forward, we create an overall average ranking of the competing model
performances for all calculated measures and find a preferable model, which provides the best av-
erage forecast quality for all four commodities. Finally, we run the model confidence set (MCS)
procedure proposed by Hansen et al. (2011) to create a set that contains the best models, which
have statistically the same predictive ability, given a significance level, selected to be 10% here
(as done by Wang et al. (2019) and Gerlach, Wang (2020)).

3. Data and empirical study
3.1. Datasets
The data used refers to daily closing prices of four commodity futures contracts, namely:
Crude Oil WTI (Oil), Natural Gas (Gas), Corn (Corn) and Soybean Oil (Soy). The first two refer

to non-renewable energies and their contracts are traded on the New York Mercantile Exchange
(NYMEX). The last two refer to raw materials used in the production of biofuels and their contracts
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are traded on the Chicago Board of Trade (CBOT). All data series were collected from Investing.com?
and is expressed in US dollars. The daily percentage log-return series for each commodity was
calculated using y, = log (B /P_, ) X100, where P, represents the closing price at time 7. The sam-

ple periods of the four assets and the descriptive statistics of the calculated log-returns are re-
ported in Table 1.

Table 1. Descriptive statistics of the commodities log-return series

Measures Oil Gas Corn Soy
Mean* 0.0172 0.0137 0.0072 0.0092
Median* 0.0489 0.0000 0.0000 0.0000
Maximum 0.3196 0.3817 0.2503 0.0904
Minimum —0.4005 —0.3757 —0.2762 —0.1102
Standard deviation* 2.4985 3.4706 1.6938 1.5011
Skewness -0.5011 0.2720 -1.1263 —-0.0100
Kurtosis 239179 12.1185 31.0846 5.5368
Jarque—Bera 179939.5 28120.2 352984.9 2861.5
Date

Start 04/06/83 04/06/90 12/31/79 01/02/80
End 01/31/22 01/31/22 01/31/22 01/31/22
Size 9847 8088 10672 10671

Note. * — values were multiplied by 10°.

All series exhibit leptokurtic distributions, as they exhibit asymmetry (mostly negative) and ex-
cess kurtosis. These characteristics are more pronounced in the Corn, Oil and Gas series, and more
moderate in the Soy series, but the heavy tails are present in all series. This means that large nega-
tive returns are more likely to occur and that if we estimate the VaR under the assumption of nor-
mality, we may be underestimating it. This evidence of non-normality is confirmed by the Jarque—
Bera test. To complement this analysis, we expose the graphical representations of the log-returns
in Fig. 1. Here some information is important to mention:

(a) the returns on non-renewable energy commodities have higher extreme values than those
on renewable energy ones;

(b) the Gas and Oil series have the highest annualized volatilities
(Standard deviation X~+/250 X100, 54.88% and 39.50% respectively; and

(c) volatility clusters are present in all commodities, which is usually observed in log-returns
of traditional financial asset prices.

2 See https://www.investing.com/.
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Fig. 1. Log-returns of commodity prices for the sample period

3.2. Empirical study

We have run the proposed method and here summarize the results with respect to our main re-
search purpose: to find a common statistical specification to reliably estimate the VaR for all selected
commodities. [f necessary, detailed test estimates can be found in Appendix A. We begin by explor-
ing Table 2, which shows the count of times each model showed VRate values closest to the level
of nominal quantile set across all four commodities. Results can be summarized in two findings.

(i) Markov chain. In general, single regime models are preferred, although the preference
for MS models increases as the level of nominal quantile increases.

(i1) Scedastic specifications and distributions. Excluding the ARCH specification which per-
formed poorly, all other scedastic specifications showed good performance when combined with
the distributions std, sstd, ged and sged.

Moving on, we explore Table 3, which shows the count of rejections of the null hypothesis
of correct VaR prediction for the UC, CC and DQ tests across all four commodities. Models with
lower rejections are preferable. We also analyze this result at two points.

(1) Markov chain. Single regime models are more numerous among the preferable ones, al-
though there is no such pronounced predominance. We also observe that as the nominal quantile
level increases, the total number of rejections decreases more significantly among the MS models.

(i1) Scedastic functions and distributions. Here we notice better performance of the girGARCH
and GARCH scedastic functions and again poor performance of ARCH. On the distributions,
we could not visualize any significant preference, although the std, sstd, ged and sged distribu-
tions appear most frequently among the preferred specifications.
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Table 2. Number of times the model obtained a better VRate across the four commodities

Model a=1% a=25% a=5% Total
SR MS SR MS SR MS SR MS

ARCH-norm 0 1 0 0 0 0 0 1
ARCH-snorm 0 0 1 2 0 0 1 2
ARCH-std 0 1 0 1 0 1 0 3
ARCH-sstd 0 1 0 1 0 1 0 3
ARCH-ged 0 1 1 1 0 1 1 3
ARCH-sged 0 1 1 1 0 0 1 2
GARCH-norm 0 0 1 1 1 0 2 1
GARCH-snorm 0 0 1 2 1 0 2 2
GARCH-std 1 2 1 1 1 5 3
GARCH-sstd 1 0 2 2 1 1 4 3
GARCH-ged 1 0 2 1 0 3 3
GARCH-sged 0 0 1 1 0 4 1
eGARCH-norm 1 0 1 1 0 0 2 1
¢GARCH-snorm 0 1 0 1 0 0 0 2
eGARCH-std 1 2 2 0 0 4 3
eGARCH-sstd 0 2 1 0 1 4 2
eGARCH-ged 1 2 2 0 1 4 4
eGARCH-sged 0 2 1 0 4 3
gjrGARCH-norm 0 0 1 1 0 3 1
girtGARCH-snorm 0 0 1 2 1 1 2 3
gjrGARCH-std 0 2 2 0 6] 2
girGARCH-sstd 1 0 1 2 0 0 2 2
girGARCH-ged 1 0 2 0 1 4 2
girGARCH-sged 0 0 2 0 1 1 3 1
Total 17 9 32 29 12 15 61 53

Note. Boxes indicate the favored model and bold indicates the second-ranked model.

We follow with Table 4, which presents the rankings of the models that have the lowest mean
absolute deviations (ADmean) between the observations and the quantiles across all four com-
modities. In the overall average ranking, MS models occupy the two positions that have the low-
est measure of expected loss given a VaR violation. Exploring the levels individually, we note that
at the 1% level the top two positions belong to single regime models, while at the 2.5% and 5%
level these positions belong to MS models. Furthermore, in the results of this comparison, we ob-
serve that most of the models listed as preferable, both in the individual risk levels and the overall
average, use norm and snorm distributions. Here we find a divergence with the previous results.
As for the scedastic functions, we could not visualize any significant preference pattern.

We complement these results with Table 5, which shows the rankings of the models with
the lowest quantile loss function (QL) values across all four commodities. We explore this result
also at two points.

(i) Markov chain. The models selected as preferred are mostly single regime, both in the indi-
vidual analysis of each level of risk and in the analysis of the overall average.
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Table 3. Counts of VaR rejections with UC, CC and DQ tests across the four commodities

Model a=1% a=25% a=5% Total

SR MS SR MS SR MS SR MS
ARCH-norm 6 6 4 4 1 16 9
ARCH-snorm 6 6 6 5 4 1 16 12
ARCH-std 5 6 3 5 2 16 9
ARCH-sstd 5 5 7 3 5 3 17 11
ARCH-ged 5 5 4 5 15 9
ARCH-sged 5 6 5 5 4 16 13
GARCH-norm 5 3 3 9
GARCH-snorm 5 3 3 9
GARCH-std 5 3 3 9
GARCH-sstd 5 5 3 3 9 9
GARCH-ged 3 3
GARCH-sged 5 5 3 3 9 9
eGARCH-norm 6 6 3 3 10 10
eGARCH-snorm 6 6 3 3 10 10
eGARCH-std 5 6 3 3 9 10
eGARCH-sstd 5 3 3 2 10
eGARCH-ged 5 5 3 3 9 9
eGARCH-sged 5 3 3 9
gjrGARCH-norm 3 3
gjrtGARCH-snorm 5 3 3 9
gjrtGARCH-std 5 3 3 9
girGARCH-sstd 5 3
girGARCH-ged 3 3
girGARCH-sged 5 3 3 9
Total 114 115 90 77 47 30 251 222

Note. Boxes indicate the models with the fewest rejections and bold indicates the models with the second-lowest num-
bers of rejections. All tests are conducted at the 10% significance level.

(i1) Scedastic functions and distributions. Clearly, the GARCH scedastic function provides
the lowest value of QL in all scenarios. In addition, we note a pattern of preference of the ged
and sged distributions for almost all specifications in the accuracy of the left-tailed return prediction.

We have now compiled all these results into an overall ranking, which is shown in Table 6.
We also analyze this result in two points.

(i) Markov chain. We find that at the 1, 2.5% and overall average risk level the preferable mod-
els are single regime, while at the 5% risk level the preferable ones are MS. The preference for MS
increases when we increase the level of risk.

(i1) Scedastic functions and distributions. The models listed as preferred use either the GARCH
or the girGARCH model, in all scenarios. Regarding the choice of probability distribution,
we notice better overall performances when the std and ged distributions are selected. Overall,
in the search for a preferred pattern in estimating VaR for all commodities and at all risk levels,
the girGARCH-std and GARCH-ged models stand out.
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Table 4. Ranking of ADmean positions of returns that violate the VaR forecasting across
the four commodities

Model a=1% a=25% a= 5% Avg rank
SR MS SR MS SR MS SR MS

ARCH-norm 34.50 35.75 29.00 22.00 13.25 28.50 18.75
ARCH-snorm 33.25 25.25 32.75 17.00 21.25 20.50 29.08 20.92
ARCH-std 27.25 33.00 29.00 24.50 19.00 23.50 25.08 27.00
ARCH-sstd 27.75 25.25 28.75 29.25 22.25 21.00 26.25 25.17
ARCH-ged 27.50 33.25 36.25 23.75 20.75 25.50 28.17 27.50
ARCH-sged 27.50 29.75 26.75 27.75 22.50 25.50 25.58 27.67
GARCH-norm 19.00 19.75 23.00 25.75 27.00 12.00 23.00 19.17
GARCH-snorm 15.00 20.25 26.25 26.50 26.75 18.25 22.67 21.67
GARCH-std 23.75 31.00 25.50 17.00 25.00 30.00 24.75 26.00
GARCH-sstd 26.75 19.25 30.25 21.50 29.00 25.50 28.67 22.08
GARCH-ged 25.25 26.00 14.75 19.75 38.50 20.50 26.17 22.08
GARCH-sged 29.75 21.50 28.00 12.75 39.25 28.75 3233 21.00
eGARCH-norm 20.50 23.25 24.25 22.75 24.00 15.25 22.92 20.42
eGARCH-snorm 12.25 22.00 25.75 35.75 29.00 14.75 22.33 24.17
eGARCH-std 23.00 17.00 26.50 23.00 27.50 24.50 25.67 21.50
eGARCH-sstd 26.25 16.50 36.75 31.75 37.00 23.25 33.33 23.83
eGARCH-ged 22.50 27.75 23.50 21.00 24.00 21.75 23.33 23.50
¢GARCH-sged 25.00 28.50 30.25 31.25 33.25 22.50 29.50 27.42
girGARCH-norm 21.75 19.25 17.75 27.00 24.50 13.75 21.33 20.00
gjrGARCH-snorm 19.25 17.25 21.75 26.00 26.50 11.25 22.50
girGARCH-std 25.50 28.75 20.25 20.00 24.50 28.00 23.42 25.58
girGARCH-sstd 21.50 16.75 25.25 25.75 23.75 23.00 23.50 21.83
girGARCH-ged 27.50 31.00 15.75 22.50 35.75 25.00 26.33 26.17
girGARCH-sged 22.25 21.25 22.75 13.50 34.75 30.00 26.58 21.58

Note. Boxes indicate the favored models and bold indicates the second-ranked model.

Finally, the MCS procedure is run. Table 7 exposes the count of the number of inclusions
of each model in the sets established by the procedure for all four commodities. The greater
the number of inclusions, the better performance the model has. Exploring these results in more
detail, we note that the GARCH-ged model, which stood out in the previous analyses, has the high-
est number of ensemble inclusions. This means that, most of the time, this statistical specification
is among those that performed best in the scenarios outlined and that have statistically the same
predictive ability. Thus, in the search for a statistical specification that has the best VaR forecast
quality for all commodities, we strongly advise choosing GARCH-ged. This choice favors the use
of a single regime model, reinforcing the results found in this regard by Chkili (2021) and Sampid
et al. (2018) and contradicting the results of Ardia et al. (2018, 2019), Caporale, Zekokh (2019)
and Segnon et al. (2017). At this point, we point out that we notice an increase in preference
for MS models when we increase the level of the nominal quantile. This may perhaps explain these
possible divergences in results in the literature.
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Table 5. Ranking of QL positions for VaR forecasting across the four commodities

Model a=1% a=2.5% a=5% Avg rank
SR MS SR MS SR MS SR MS
ARCH-norm 4525 26.50 40.00 18.25 3225 25.00 39.17 23.25
ARCH-snorm 44.50 31.25 39.00 22.50 33.25 25.75 38.92 26.50
ARCH-std 35.50 28.50 38.25 29.50 42.25 39.00 38.67 32.33
ARCH-sstd 36.25 31.75 37.50 32.25 38.75 38.75 37.50 34.25
ARCH-ged 36.50 29.25 33.75 17.00 35.00 27.00 35.08 24.42
ARCH-sged 36.25 26.50 34.50 24.50 35.00 3225 35.25 27.75
GARCH-norm 21.50 25.50 20.25 27.50 28.50 17.33 27.17
GARCH-snorm 23.75 25.75 22.75 25.50 12.75 27.75 19.75 26.33
GARCH-std 13.00 19.00 16.75 21.75 21.75 16.83 17.17
GARCH-sstd 14.00 13.75 20.50 14.00 26.00 16.75 20.17 14.83
GARCH-ged 11.00 19.75 14.00 16.50 16.75
GARCH-sged 12.75 20.50 14.00 2225 13.00 18.75 13.25 20.50
eGARCH-norm 32.50 26.00 27.75 26.75 19.25 28.75 26.50 27.17
eGARCH-snorm 37.50 28.75 32.25 27.75 24.00 32.25 31.25 29.58
eGARCH-std 19.50 24.00 24.75 28.75 29.25 30.25 24.50 27.67
eGARCH-sstd 21.00 26.50 29.75 30.75 35.25 31.75 28.67 29.67
eGARCH-ged 17.25 23.00 18.25 23.25 17.00 24.75 17.50 23.67
eGARCH-sged 20.00 28.75 23.75 27.00 23.50 26.00 22.42 27.25
gjrGARCH-norm 23.50 25.50 22.50 29.25 11.75 26.25 19.25 27.00
gjrGARCH-snorm 27.75 29.25 24.75 22.50 13.75 23.25 22.08 25.00
gjrGARCH-std 15.50 14.50 20.00 19.50 21.25 16.00 18.92 16.67
gjrGARCH-sstd 16.25 15.50 21.75 20.25 27.75 19.25 21.92 18.33
girGARCH-ged 15.75 29.00 14.75 25.25 11.50 23.00 14.00 25.75
girGARCH-sged 17.25 22.50 16.00 2225 14.25 17.75 15.83 20.83

Note. Boxes indicate the favored models and bold indicates the second-ranked model; QL function is conducted at the 1%
significance level.

As a practical example, we plot Fig. 2 to graphically analyze the performance of the proposed spe-
cification in predicting VaR at the 5% risk level. We make this exercise more interesting by also plot-
ting the predictions of a competing model for comparison. Here, we have chosen the MSGARCH-sged
model, which was the best performer in this individual scenario (Oil series and 5% risk level). As we
can see, the proposed statistical specification accomplishes its purpose very well.

4. Conclusion

Changes in commodity prices can be transmitted directly to the real economy through changes
in the marginal cost of production. These movements can cause important losses for economic
agents who are not prepared to face them. For this reason, it is of utmost importance to create
protection mechanism against these movements. One way to protect itself is to take exposure
in the commodities futures market, but this involves risks that must be considered by economic
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Table 6. Overall ranking of the average positions on each statistical measure

Model a=1% a=2.5% a=5% Avg rank
SR MS SR MS SR MS SR MS
ARCH-norm 39.25 21.25 43.00 22.75 29.50 13.00 37.25 19.00
ARCH-snorm 38.50 31.50 39.00 17.25 29.75 14.75 35.75 21.17
ARCH-std 28.75 21.25 42.50 20.75 31.00 28.25 34.08 23.42
ARCH-sstd 30.00 23.00 43.00 25.75 32.25 26.00 35.08 24.92
ARCH-ged 29.75 22.50 37.75 22.00 30.25 16.75 32.58 20.42
ARCH-sged 29.25 19.25 35.25 30.50 31.75 33.25 32.08 27.67
GARCH-norm 12.00 19.25 13.50 20.25 10.75 14.75 12.08 18.08
GARCH-snorm 11.75 20.00 18.75 16.25 11.50 15.50 14.00 17.25
GARCH-std 06.50 18.25 10.00 08.75 13.25 16.50 09.92 14.50
GARCH-sstd 16.00 13.50 15.25 04.75 18.25 12.00 16.50 10.08
GARCH-ged 08.75 16.50 02.25 08.25 18.00 05.25 09.67 10.00
GARCH-sged 21.00 18.25 10.25 10.50 15.25 19.00 15.50 15.92
e¢GARCH-norm 25.50 28.00 19.50 17.25 15.50 16.00 20.17 20.42
eGARCH-snorm 27.25 25.00 27.75 25.50 21.50 16.75 25.50 22.42
eGARCH-std 14.00 19.25 15.50 14.50 23.75 21.25 17.75 18.33
eGARCH-sstd 17.25 13.50 22.75 26.50 38.00 16.00 26.00 18.67
eGARCH-ged 13.25 21.00 08.25 10.00 14.75 11.25 12.08 14.08
eGARCH-sged 15.25 23.50 17.50 24.25 22.25 11.50 18.33 19.75
2jrGARCH-norm 15.25 13.75 12.50 23.25 07.75 14.25 11.83 17.08
gjirGARCH-snorm 15.50 21.00 15.75 13.25 11.75 07.25 14.33 13.83
gjrtGARCH-std 09.50 21.75 07.00 06.50 11.00 17.50 15.25
gjrGARCH-sstd 08.50 13.25 15.75 10.75 19.25 14.50 14.50 12.83
gjirGARCH-ged 12.75 25.00 03.50 22.00 13.75 12.50 10.00 19.83
girGARCH-sged 13.25 18.75 06.50 16.25 14.75 15.25 11.50 16.75

Note. Boxes indicate the favored models and bold indicates the second-ranked model.
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Fig. 2. One-day ahead VaR forecasts for commodity Oil at the 5% risk level provided by
GARCH-ged and MSGARCH-sged, along with the realized returns
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Table 7. Counts total number of inclusions in the MCS at 10% significance level

Model a=1% a=25% a=5% Total
SR MS SR MS SR MS SR MS
ARCH-norm 2 2 2 2 2 2 6 6
ARCH-snorm 2 2 2 2 1 3 5 7
ARCH-std 1 2 1 2 1 0 3 4
ARCH-sstd 1 1 1 2 1 1 3 4
ARCH-ged 1 2 2 1 1 4 6
ARCH-sged 1 2 2 2 1 1 4 5
GARCH-norm 2 2 1 1 0 7 3
GARCH-snorm 2 2 2 1 3 0 7 3
GARCH-std 2 1 2 1 2 5 6
GARCH-sstd 2 1 1 2 6 6
GARCH-ged 2 2 2 6
GARCH-sged 2 2 3 1 9 5
eGARCH-norm 1 1 1 2 3 1 5 4
eGARCH-snorm 1 1 1 1 2 1 4 3
eGARCH-std 2 1 2 1 1 5 5
eGARCH-sstd 1 1 1 0 1 4 3
eGARCH-ged 2 2 1 3 0 8 3
eGARCH-sged 2 2 1 2 1 7 4
gjirtGARCH-norm 2 2 1 1 3 0 6 3
girtGARCH-snorm 2 2 2 2 3 2 7 6
gjrtGARCH-std 1 1 2 5 8
girGARCH-sstd 2 2 1 2 6 7
gjrGARCH-ged 2 2 3 2 9 6
gjrtGARCH-sged 2 2 2 3 1 8 5

Note. Boxes indicate the favored model and bold indicates the second-ranked model, based on the total number
of inclusions in the MCS across the four commodities.

agents, such as tail risk. Controlling this risk is essential within active risk management and can
be accomplished by estimating VaR. Because it involves a certain complexity, economic agents
may be facing difficulties in making reliable commodity VaR forecasts. For this and other rea-
sons, this research sought to provide a common statistical specification for agents to reliably esti-
mate the VaR of four important energy commodities. To this end, we analyze 48 different speci-
fications of the Markov-switching GARCH model, consisting of four scedastic specifications, six
conditional distributions, and a Markov chain with up to two regimes.

As a result of our empirical study, we proposed the GARCH-ged model as the common statis-
tical specification. Here some observations can be made:

(i) Markov chain. A single regime model was preferred, showing that the use of Markov
chains in estimating the models are not advisable for predicting the VaR of all four commodi-
ties studied.

(i1) Scedastic functions and distributions. The standard GARCH scedastic function was pre-
ferred, showing that a simple mathematical structure outperformed more complex mathematical
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structures that include several statistical parameters. Over the distributions, we note a pat-
tern of preference of the ged distribution in the accuracy of the left-tailed return prediction.
The choice of the right distribution really impacts the VaR estimation, and more complex dis-
tributions are preferable. We strongly advise against using the normal distribution for VaR
estimation.

These results contribute to a better efficiency in the creation of protection mechanisms against
significant oscillations in the prices of energy commodities. Thus, companies dependent on these
commodities, both directly and indirectly, can gain competitive advantages over their competitors.
Individuals who include these commodities in their consumption baskets can maximize their util-
ity functions. In addition, companies, farmers, investors, investment funds, and the like can also
benefit from these results to reduce the market risk of their conventional financial positions, since
commodity prices tend to behave inversely to economic activity.
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Appendix A
Testing model performance in VaR forecasts

We present here the detailed estimation results of all statistical tests for a 1% significance level?,
as follows: Table A1 show the VRate values; Table A2 show the count of rejections of the null hy-
pothesis of correct VaR prediction for the UC, CC and DQ tests; Table A3 show the values of mean
absolute deviation of returns that violate the VaR forecasting; Table A4 expose the quantile loss
function values for VaR forecasting; and finally, Table A5 present the model confidence set at 10%
significance level for VaR forecasts.

Table Al. VaR violation rate values for 1% VaR forecasting

Model Oil Gas Corn Soy Total
SR MS SR MS SR MS SR MS SR MS

ARCH-norm 1.60 200 160 240 120  4.00 0 1
ARCH-snorm 1.60 200 240 240 120 440  2.80 0 0
ARCH-std 1.60 200 160 200 120  3.60 0 1
ARCH-sstd 160 160 200 240 200 120  3.60 0 1
ARCH-ged 1.60 200 120 200 120  3.60 0 1
ARCH-sged 1.60 160 200 160 200 120  3.60 0 1
GARCH-norm 200 200 120 160 200 200 320 240 0 0
GARCH-snorm 200 200 200 200 200 160 320 240 0 0
GARCH-std 200 [1.20 1.20 280  2.80 1
GARCH-sstd 1.20] 120 200 120 1.60 320  2.40 1 0
GARCH-ged 200 160 [0.80] 120 040 160 320  2.40 1 0
GARCH-sged 1.20 120 200 040 200 320  2.40 0 0
eGARCH-norm 280 280 [0.80] 120 200 120 320 240 1 0
e¢GARCH-snorm 2.80 2.80  2.00 1.60  2.00 3.20 2.40 0 1
eGARCH-std 240 280 [0.80] [0.80] [0.80] 1.60  3.20  2.40 1
eGARCH-sstd 240  2.00 2.00 1.60 320 240 0
eGARCH-ged 240 240 1.20 3.20 2.40 1
eGARCH-sged 240  2.00 1.60  [0.80 120 320 240 0
girGARCH-norm 200 200 120 160 160  2.00 320  2.40 0 0
girGARCH-snorm 200 200 200 240 160 160 320  2.40 0 0
gjrtGARCH-std 2.00 1.20 120 280  2.40 0
gjrGARCH-sstd 2.00 120 1.60 [0.80] 200 320 240 1 0

3 The detailed estimation results of statistical tests for the other significance levels can be requested from the authors.
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End of Table A1 °

Model Oil Gas Soy Total :'=:
SR MS SR MS SR MS SR MS SR MS S

girGARCH-ged 200  1.60 080 120 040  1.60  2.80  2.40 1 0 §
girGARCH-sged 200 [120] 120 200 040 200 320 240 0 <
Total 1 0 9 1 7 0 5 17 =

Note. Boxes indicate the preferred models; Bold indicates that the violation rate is significantly different from 1%
according to the UC test. The test is conducted at the 10% significance level.

Table A2. Counts of 1% VaR rejections with UC, CC and DQ tests

Model ucC CC

DQ

Total
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eGARCH-norm
eGARCH-snorm
eGARCH-std
eGARCH-sstd
¢GARCH-ged
eGARCH-sged
gjrGARCH-norm
girtGARCH-snorm
gjirtGARCH-std
gjirGARCH-sstd
girtGARCH-ged
girtGARCH-sged
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Note. Boxes indicate the models with the fewest rejections. All tests are conducted at the 10% significance level.
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Table A3. Mean absolute deviation of returns that violate the 1% VaR forecasting

Model Oil Gas Corn Soy Avg rank
SR MS SR MS SR MS SR MS SR MS

ARCH-norm 3.684 4975 3978 3.115 3,607 5088 1.579 1.727 3450 35.75
ARCH-snorm 3.602 4.844 4254 2632 3495 4883 1499 0997 3325 2525
ARCH-std 2980 4735 3389 3432 3701 4976 1389 1220 2725 33.00
ARCH-sstd 2.686 3.618 3.617 2790 3768 4995 1505 1.156 27.75 25.25
ARCH-ged 2980 4.691 3.385 3441 3.701 4.679 1406 1229 2750 33.25
ARCH-sged 2.735 3471 3577 3.680 3.701 4.642 1508 1.159 27.50 29.75
GARCH-norm 3.072 2904 3390 3217 2.741 2.852 1.038 1.240 19.00 19.75
GARCH-snorm 2915 2786 2472 2862 2718 3.394 1.206 1.322 15.00 20.25
GARCH-std 2,784 4298 4794 3.827 5.679 6.125 0910 0917 23.75 31.00
GARCH-sstd 4233 3.753 3.573  2.563 3.866  3.095 0.991 1.143 26.75 19.25
GARCH-ged 2.758  3.399 4.505 3.591 11.301 3.230  0.807 1.224 2525  26.00
GARCH-sged 4.189 3.819 3342 2453 11301 2.651 1.003 1451 29.75 21.50
¢GARCH-norm 2491 2500 6.294 4290 2.897 4.196 1.038 1.135 2050 23.25
¢GARCH-snorm 2341  3.092 3293 2885 6.209 1.210 1.205 22.00
eGARCH-std 2.605 2332 6.158 6266 5.853 3249 [0.782] 0921 23.00 17.00
eGARCH-sstd 2365 2954 6.631 3.083 5965 3305 0961 1.008 2625 16.50
eGARCH-ged 2.583 2698 5771 3763 5853 6320 0.784 1.085 2250 27.75
eGARCH-sged 2343 2967 6.243 3528 5.881 4256 0978 1242 2500 28.50
girtGARCH-norm 3.137 2.889 3390 3.110 3439 2807 1.033 1260 21.75 19.25
gitGARCH-snorm 2980 2.875 2.460 3439 3380 1.213 1225 1925 17.25
girtGARCH-std 2.875 4342 4794 3807 5707 4438 0.920 0937 2550 28.75
girGARCH-sstd 2,627 3.884 3.573 3343 5.791 0986 0.927 21.50 16.75
gjrGARCH-ged 2.849 3317 4.538 6257 11356 3285 0920 1235 2750 31.00
gjrGARCH-sged 2.640 3928 3342 2440 11356 2707 0.995 1.345 2225 21.25

Note. All values were multiplied by 10%; Boxes indicate the favored models; bold indicates the second-ranked model.

Table A4. Quantile loss function values for 1% VaR forecasting at 1% significance level

Model Oil Gas Corn Soy Avg rank
SR MS SR MS SR MS SR MS SR MS

ARCH-norm 1.162 1.162 1.607 1302 1.320 1.107 1.012 0.757 45250 26.500
ARCH-snorm 1.160 1.156 1.626 1391 1.306 1.104 1.034 0.760 44.500 31.250
ARCH-std 1.116 1.155 1.579 1369 1.252 1.109 0917 0.714 35500 28.500
ARCH-sstd 1.103  1.183 1.596 1451 1.259 1.109 0948 0.711 36.250 31.750
ARCH-ged 1.119  1.170 1.576 1400 1.252 1.083 0.921 0.713 36.500 29.250
ARCH-sged 1.111 1.161 1.588 1.369 1.252 1.080 0.948 [0.709] 36.250 26.500
GARCH-norm 1.137  1.121 1.340 1.045 1.100 0.811 0.775 21.500 25.500
GARCH-snorm 1.128 1.112 1.267 1368 1.042 1.091 0.847 0.782 23.750 25.750
GARCH-std 1.119  1.100 1.260 1.312 1.006 1.019 0.757 0.759 [9.750] 13.000
GARCH-sstd 1.103 1.262 1331 1.007 1.009 0.800 0.770 14.000 13.750
GARCH-ged 1.116  1.128 1.244 1275 1.008 1.040 0.760 0.783 11.000 19.750
GARCH-sged 1.100  1.097 1.244 1291 1.007 1.046 0.804 0.836 12.750 20.500
eGARCH-norm 1.194 1218 1.317 1360 1.052 1.034 0.812 0.756 32.500 26.000
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End of Table A4
Model Oil Gas Corn Soy Avg rank
SR MS SR MS SR MS SR MS SR MS
¢GARCH-snorm 1.170  1.199 1.391 1346 1.053 1.045 0851 0.762 37.500 28.750
eGARCH-std 1.155  1.190 1.368 1.347 0998 1.041 0.756 0.723 19.500 24.000
eGARCH-sstd 1.130 1.161 1.362 1.413 (0998 1.043 0.796 0.739 21.000 26.500
¢GARCH-ged 1.152 1.185 1.345 1299 0998 1.025 0.757 0.760 17.250 23.000
¢GARCH-sged 1.126  1.164 1341 1363 0998 1.025 0.800 0.795 20.000 28.750
girGARCH-norm 1.154 1122 1220 1322 1.052 1.095 0.811 0.782 23.500 25.500
gjirGARCH-snorm 1.144  1.143 1264 1363 1.053 1.092 0850 0.764 27.750 29.250
gitGARCH-std 1.139  1.097 1260 1309 1.009 1.062 0.760 0.727 15.500 14.500
girGARCH-sstd 1.120  1.099 1262 1352 1.007 1.045 0.800 0.726 16.250 15.500
girGARCH-ged 1.136  1.119 1247 1595 1.013 1.053 0.761 0.790 15.750 29.000
gjirGARCH-sged 1.124  1.100 1.244 1289 1.012 1.066 0.802 0.816 17.250 22.500

Note. All values were multiplied by 10°; Boxes indicate the favored models; bold indicates the second-ranked model.

Table AS. Model confidence set at 10% significance level for 1% VaR forecasts

Model Oil Gas Corn Soy Total
SR MS SR MS SR MS SR MS SR MS

ARCH-norm Yes Yes Yes Yes 2 2
ARCH-snorm Yes Yes Yes Yes 2 2
ARCH-std Yes Yes Yes 1 2
ARCH-sstd Yes Yes 1 1
ARCH-ged Yes Yes Yes 1 2
ARCH-sged Yes Yes Yes 1 2
GARCH-norm Yes Yes Yes Yes 2 2
GARCH-snorm Yes Yes Yes Yes 2 2
GARCH-std Yes Yes Yes Yes Yes 3 2
GARCH-sstd Yes Yes Yes Yes Yes Yes 3 3
GARCH-ged Yes Yes Yes Yes Yes 3 2
GARCH-sged Yes Yes Yes Yes Yes 3 2
eGARCH-norm Yes Yes 1 1
eGARCH-snorm Yes Yes 1 1
eGARCH-std Yes Yes Yes Yes Yes 3 2
eGARCH-sstd Yes Yes Yes Yes 3 1
eGARCH-ged Yes Yes Yes Yes Yes 3 2
eGARCH-sged Yes Yes Yes Yes Yes 3 2
girtGARCH-norm Yes Yes Yes Yes 2 2
girtGARCH-snorm Yes Yes Yes Yes 2 2
gitGARCH-std Yes Yes Yes Yes Yes Yes 3 3
gjirGARCH-sstd Yes Yes Yes Yes Yes Yes 3 3
gjirGARCH-ged Yes Yes Yes Yes Yes 3 2
gjrGARCH-sged Yes Yes Yes Yes Yes 3 2
Total 22 14 20 23 12 3 0 7 54 47

Note. Boxes indicate the favored model, based on the total number of inclusions in the MCS across the four commodities.

Commodity and financial markets

ToBapHble U (hMHAHCOBbLIE PbIHKK

27

R. Amaro, C. Pinho





